Verbrennungsmotoren - Motormechanik, Berechnung und Auslegung des Hubkolbenmotors

von: Eduard Köhler, Rudolf Flierl

Vieweg+Teubner (GWV), 2009

ISBN: 9783834892515 , 534 Seiten

5. Auflage

Format: PDF, OL

Kopierschutz: DRM

Windows PC,Mac OSX für alle DRM-fähigen eReader Apple iPad, Android Tablet PC's Online-Lesen für: Windows PC,Mac OSX,Linux

Preis: 49,99 EUR

Mehr zum Inhalt

Verbrennungsmotoren - Motormechanik, Berechnung und Auslegung des Hubkolbenmotors


 

2 Einleitung (S. 3-4)

2.1 Bedeutung der Berechnung im Entwicklungsprozess

Konstruktion, Berechnung und Versuch stehen in einer gegenseitigen Abhängigkeit, wie sie z. B. in [A1] beschrieben wird. Die Entwicklungsbereiche, die im Wesentlichen in diese drei Organisationseinheiten unterteilt sind, sehen sich mehr und mehr dem Druck immer kürzerer Entwicklungszeiten ausgesetzt. Vorgehensweisen wie „Simultaneous Engineering" o. Ä. gewinnen damit zunehmend an Bedeutung. Je leistungsfähiger die Beiträge der Berechnung sind, umso stärker kann sie in die Entwicklungsabläufe eingebunden werden. Entscheidend für die Wirksamkeit der Berechnung ist somit ihre Integration in den Entwicklungsprozess.

Dies setzt bei anspruchsvollen Aufgaben problemorientierte Software, leistungsfähige Hardware und anwenderfreundliche Benutzeroberflächen voraus. Der eindeutige Vorteil der Berechnung (hier gleichzusetzen mit der Simulation) ist der, dass bereits lange vor der Verfügbarkeit von Prototypen eine Voroptimierung durchgeführt werden kann, wodurch sich die Anzahl der zu untersuchenden Versuchsvarianten auf ein Minimum reduziert. Somit ist ein erheblicher Einsparungs- und Beschleunigungseffekt zu verzeichnen.

Insbesondere was die Parametervariation anbetrifft, kennt die Berechnung im Gegensatz zum Versuch keinerlei Einschränkungen, wenngleich auch bei der Erstellung von aufwändigen Rechenmodellen, wie schon erwähnt, die Wirtschaftlichkeit zu beachten ist. Die Berechnung leistet damit einen nicht zu unterschätzenden Beitrag zur Senkung der Entwicklungskosten. Berechnung und Versuch ergänzen sich auch dort, wo einspuriges Vorgehen in den Möglichkeiten begrenzt und damit nicht zielführend ist (z. B. unverhältnismäßig hoher Messaufwand). Die Berechnung hilft darüber hinaus bei der Interpretation von Messergebnissen.

Die jeweiligen Schwächen von Berechnung und Versuch sind in [A1] gegenübergestellt. Die Nutzung des Potenzials technischer Berechnungen erfolgt heute unter dem Überbegriff CAE (Computer Aided Engineering). Dahinter verbergen sich Produkt- und Verfahrensentwicklung unterstützende Programmpakete mit Zugang zu Datenbanken, die mit Hilfe einer selbsterklärenden und übersichtlichen Benutzeroberfläche möglichst mit Plausibilitätsprüfung der Daten genutzt werden können. Der Anwender muss nicht mehr notwendigerweise ein Berechnungsexperte sein. Die einzelnen Bausteine eines CAESystems werden auch als „CAE-Tools", also als Werkzeuge, bezeichnet.

Je nach Ausbaustufe, gespeichertem Erfahrungsumfang und dessen logischer Verknüpfung ist auch der Begriff „Expertensystem" eingeführt. Ziel des CAE ist es, dem Entwicklungsingenieur möglichst effiziente Mittel unter Nutzung eines produktspezifischen Erfahrungsschatzes an die Hand zu geben. CAE geht damit weit über die rechnergestützte technische Berechnung hinaus. CAE ist ein wichtiges Bindeglied im CAD/CAM-Verbund mit dem Fernziel CIM (Computer Integrated Manufacturing).

Mittels CAD werden z. B. Geometriedaten erzeugt. Diese werden über genormte Schnittstellen an ein CAE-System übergeben, das die Pro duktoptimierung vornimmt. Die optimierte Geometrie wird an das CAD-System zurückgegeben und dort für die CAD/CAM-Nutzung aufbereitet. Auf diese Weise entstehen CNC-Bearbeitungsprogramme, die, um an den einzelnen Bearbeitungsmaschinen Verwendung finden zu können, noch einem „Post-Processing" unterzogen werden müssen.

Möglichst während des Fertigungsprozesses (SPC, Statistical Process Control), aber auch danach können Solldaten nochmals im Rahmen des CAQ (Computer Aided Quality Assurance, auch ein Bestandteil von CIM) für die Qualitätssicherung herangezogen werden. In diesem Zusammenhang soll nicht unerwähnt bleiben, dass das eigentliche Ziel der Qualitätsbemühungen nicht das der optimal überwachten, sondern das der beherrschten Prozesse ist, die innerhalb so enger Grenzen ablaufen, dass auf SPC verzichtet werden kann.