Geology and Revelation

Geology and Revelation

von: J. D. Dana

Charles River Editors, 2018

ISBN: 9781531297930 , 448 Seiten

Format: ePUB

Kopierschutz: DRM

Windows PC,Mac OSX für alle DRM-fähigen eReader Apple iPad, Android Tablet PC's Apple iPod touch, iPhone und Android Smartphones

Preis: 1,73 EUR

Mehr zum Inhalt

Geology and Revelation


 

CHAPTER I. THEORY OF GEOLOGISTS.


..................

GEOLOGY DEFINED—FACTS AND THEORIES—RECENT PROGRESS of Geology—Stratification of Rocks—Aqueous Rocks; of Mechanical Origin—of Chemical Origin—of Organic Origin—Igneous Rocks, Plutonic and Volcanic—Metamorphic Rocks—Summary of the Rocks that compose the Crust of the Earth—Relative order of position—Internal condition of the Globe—Movements of the Earth’s Crust—Subterranean disturbing force—Uplifting and bending of Strata—Denudation and its Causes—Fossil Remains—Their Value in Geological Theory.

THE object of Geology is to examine and record the appearances presented by the Crust of the Earth; and by the aid of these appearances, to trace out the long series of events by which it has been brought into its present condition. Geology, therefore, like all other natural sciences, is made up partly of fact, and partly of theory. It belongs to the Geologist first to investigate the phenomena which the Crust of the Earth exhibits to the eye. For this purpose he descends into the mine and the quarry; he visits the lofty cliff by the sea-shore, the deep ravine on the mountain side, the cutting of a railway; in a word, every spot where a section of the Earth’s Crust is exposed to view, either by the action of Nature or by the hand of man. He then retires into the silence of his closet, with his note-book and his specimens; and there, having arranged and classified the various phenomena which he has already examined with his eyes in the outer world, he proceeds to make his deductions, and to build up his theory. He seeks to explain how materials, so diverse in their composition, have come to be piled up together, with such admirable order, and yet with such endless variety; and how the solid rocks have come to be the repository of petrified trees and plants and bones and shells, which seem, as it were, to start up from their graves, and to tell strange stories of a bygone world.

In the early days of Geology there were comparatively few who devoted themselves with patient industry to the collection and classification of facts: while the number was legion of those who, with a very meagre knowledge of facts, set themselves to build up systems. A vast multitude of different and conflicting theories were, in this way, brought into existence, and attracted for a time much public attention, each one being vehemently defended by its friends and as vehemently assailed by its enemies. These theories resting on no solid foundation, could not hold their ground against the advancing tide of new discoveries. They flourished for a brief space, and then gave way to others scarcely more substantial, which were destined in their turn to be likewise rejected and forgotten. Thus it came to pass, from the manifest instability of its principles, that Geology was long held in light repute, and practical men set little store by its boasted discoveries and startling revelations.

But it would be unjust and unphilosophical to condemn the modern theory of Geologists because of their past errors. We must judge of this science, not according to what it once was in the feebleness of its infancy, but according to what it now is in the growing strength of its mature years. It seems to be in the nature of things that groundless speculations and wild conjectures go before, and sober Science follows in their wake. The visionary dreams of the Alchemist led the way to the science of Chemistry, and the idle fancies of the Astrologist have given place to the marvellous discoveries of Astronomy. So, too, amidst the confused mass of conflicting arguments and opinions, by which the phenomena of Geology were for a long time enveloped and obscured, the seeds of a new science were slowly germinating. New facts were eagerly sought after to support or to impugn the favorite theory of the hour; and though theory after theory passed away, yet the facts remained. In course of time this accumulation of facts became broad and deep and solid enough to form a sound basis for inductive reasoning; and thus almost within our own days Geology may be fairly said to have assumed the rank and dignity of a science.

During the last quarter of a century it has been studied with a more ardent enthusiasm than, perhaps, any other science in England, in France, in Germany, and in America. It has been studied, too, upon better principles than before: less attention has been paid to the building up of theories, and far more pains and labor have been expended on the careful investigation of natural phenomena. There are still, no doubt, different schools of Geologists which are divided among themselves as regards many important details of theory; but there are some general conclusions upon which all Geologists are substantially agreed, and which, they assure us, are established by evidence that is absolutely irresistible. It is to these conclusions we wish to invite the attention of our readers; for they bear very closely on the question of the Antiquity of the Earth.

Geologists tell us, then, that the materials of which the Earth’s Crust is composed, are not heaped together in a confused mass, but are disposed with evident marks of definite and systematic arrangement. This is an important truth, of which many examples are familiar to us all, though perhaps we do not all attend to their significance. Thus in a quarry, we see commonly enough first a bed of limestone, then above that a bed of gravel, and higher still a bed of clay: and even the limestone itself is not usually a compact mass, but is arranged in successive layers, something like the successive courses of masonry in a building. Now it appears that a very large proportion of the Earth’s Crust is made up in this way of successive layers, or strata, as they are called by Geologists. These strata are composed of various substances, such as clay, chalk, sand, lime, and coal; and they present everywhere the same general appearances. They are known under the common name of Aqueous Rocks,13 because it is believed that they were originally formed under water; and here it is that the professors of Geology first come into collision with the popular notions that formerly prevailed.

They hold that these stratified rocks were not arranged as we see them now, when the Earth first came from the hands of its Creator, but have been formed, during the lapse of unnumbered ages, by the operation of natural causes. Nay more, they have divided the rocks into sundry classes, and they undertake to explain the particular process by which each several variety has been produced. First in order and importance are those which derive their existence from the mechanical force of moving water. The materials of which they are composed first existed in the form of minute particles, which were transported by the action of water from one place to another; then they were spread out over a given surface, just as we now see layers of sand, or mud, or gravel deposited near the mouths of rivers, or in the estuaries of the sea, or even upon the land itself during temporary inundations. Lastly, after a long interval came the slow but certain process of consolidation. The fine sand was cemented together and became sandstone; the loose gravel by a similar process was transformed into a solid mass, known by the name of Conglomerate or Pudding-stone; while the soft mud by simple pressure was converted into a kind of slaty clay, called Shale. Thus from age to age Nature was ever building up new strata, and consolidating the old.

Next in order are the Aqueous Rocks, which owe their origin to the agency of chemical laws. To this class belong many of our limestone formations. Large quantities of carbonate of lime are held in solution by water charged with carbonic acid gas: when the carbonic acid, in course of time, passes off, the carbonate of lime can no longer be held in solution, and it is accordingly precipitated in a solid form to the bottom. In this manner was formed that peculiar kind of limestone called Travertine, which abounds in Italy, and which is well known to all who have visited Rome, as the stone of which the Coliseum was built. A still more familiar example, on a small scale, is seen in the case of Stalactites and Stalagmites. Water saturated with carbonic acid trickles down the sides, or drops from the roof of a limestone cavern. In its course it dissolves carbonate of lime, and holds it in solution; afterward, reaching the floor of the cavern, it slowly evaporates and leaves behind it a thin sheet of limestone which is called a Stalagmite; while the icicle-like pendants that are formed by a similar process, on the roof of the cavern, are called Stalactites.

There is a third class of Aqueous Rocks which are supposed to be made up almost exclusively of the fragmentary remains of plants and animals, and are therefore called Organic. The well-known coral reefs, so dreaded by the sailor in tropical seas, are believed to be nothing more than a mass of stony skeletons belonging to the minute marine animalcules known among zoologists as Polyps or Zoophytes. These little creatures, existing together in countless multitudes, extract carbonate of lime from the waters of the ocean in which they dwell, and by the action of their living organs, convert it into a solid frame or skeleton, which is called coral. From generation to generation the same process has been going on during the long succession of Geological ages; and huge masses of coral rock, hundreds of miles in length, have thus been slowly built up from fathomless depths of the ocean to within a few...