Materials for Advanced Packaging

von: Daniel Lu, C.P. Wong

Springer-Verlag, 2016

ISBN: 9783319450988 , 974 Seiten

2. Auflage

Format: PDF, OL

Kopierschutz: DRM

Windows PC,Mac OSX für alle DRM-fähigen eReader Apple iPad, Android Tablet PC's Online-Lesen für: Windows PC,Mac OSX,Linux

Preis: 213,99 EUR

Mehr zum Inhalt

Materials for Advanced Packaging


 

Preface

5

Preface to the First Edition

7

Contents

9

Contributors

11

About the Authors

15

Chapter 1: 3D Integration Technologies: An Overview

17

1.1 Introduction

17

1.1.1 Motivation for 3D Integration

18

1.1.2 Technology Platforms for 3D Integration and Packaging

19

1.2 Major Key Enabling 3D Technologies and Materials

20

1.2.1 Typical 3D Integration Process Flows

21

1.2.2 Wafer Thinning and Dicing

21

1.2.3 Wafer and Chip Stacking

24

1.3 TSV Integration Scheme and Process

25

1.3.1 TSV Integration Scheme and Process

26

1.3.1.1 TSV Integration Scheme

26

1.3.1.2 TSV Process Flow

26

1.3.1.3 TSV Scaling

28

1.3.2 Alternative TSV Process Options

28

1.4 Potential Limitations to 3D System Integration

32

1.5 Major Applications of 3D Integration

33

1.6 3D Integration Perspectives

37

References

39

Chapter 2: Advanced Bonding/Joining Techniques

43

2.1 Adhesive Bonding Techniques

44

2.1.1 Adhesives in the Electronic Industries

44

2.1.1.1 Epoxy Resins

44

2.1.1.2 Silicone Resins

44

2.1.1.3 Polyimides

45

2.1.1.4 Acrylics

45

2.1.2 Applications of Adhesives in Electronics

45

2.1.2.1 Integrated Circuits

45

2.1.2.2 Flexible Circuit

46

2.1.2.3 Liquid Crystal Display

46

2.1.3 New Adhesives

47

2.1.3.1 Liquid Crystal Polymer (LCP)

47

2.1.3.2 SU 8 Adhesive Bonding

47

2.2 Lead-Free Soldering Processes

48

2.2.1 Basic Soldering Processes

48

2.2.2 The Fluxless Processes Dealing with Tin Oxides

50

2.2.3 Oxidation-Free Fluxless Soldering Technology

51

2.3 Bonding Processes Using Silver Indium System for High Temperature Applications

58

2.3.1 Silver-Indium Phase Diagram and Reactions at 180C

58

2.3.2 Si Chips Bonded to Ag/Cu Substrates Using Ag-In System

59

2.3.3 Bonding Silicon Chips to Aluminum Substrates Using Ag-In System Without Flux

60

2.3.4 The Strength of High Temperature Ag-In Joints Made Between Copper by Fluxless Low Temperature Processes

68

2.3.5 Thermal Cycling Reliability Study of Ag-In Joints Between Si Chips and Cu Substrates Made by Fluxless Processes

75

2.4 Solid-State Bonding Technology

81

2.4.1 Introduction to Solid-State Bonding

81

2.4.2 Fundamental Principle of Solid-State Bonding

81

2.4.3 The Quantum Solid-State Bonding Theory

83

2.4.4 Novel Ag-to-Cu Solid-State Bonding a.k.a Direct Bonding

88

2.4.5 Cu-to-Ag/Cu Solid-State Bonding

89

2.5 Silver Flip-Chip Interconnect Technology

91

2.5.1 10mum Silver Flip-Chip Joints Made by 250C Solid-State Bonding Process

96

References

103

Chapter 3: Advanced Chip-to-Substrate Connections

107

3.1 Introduction

107

3.1.1 ITRS Projections for Flip-Chip Connections

109

3.1.2 Electrical Modeling of I/O

110

3.1.2.1 Parasitic Inductance of Chip-to-Substrate I/O

110

3.1.2.2 Parasitic I/O Capacitance

113

3.1.2.3 Characteristic Impedance

114

3.1.3 Mechanical Modeling

115

3.2 Compliant Solder-Based I/O Structures

118

3.2.1 Peripheral-to-Flip-Chip Area Array Structures

118

3.2.2 Redistribution Using Area Array Solder I/O

119

3.3 Wafer-Scale Compliant I/O

119

3.4 Improved Mechanical Performance Solder-Capped Structures

123

3.5 Solder-Free Chip-to-Substrate Interconnects

126

3.5.1 Copper Interconnects

127

3.5.1.1 Thermal-Compression Bonding

128

3.5.1.2 Surface-Activated Bonding

130

3.5.1.3 All-Copper Chip-to-Substrate Pillar Interconnects

132

3.5.2 Electroplated Copper Column Arrays

133

3.5.3 Compliant Gold Bump Interconnects

135

3.5.4 Electroless NiB Interconnects

136

3.6 Future Needs and Solutions for Chip-to-Substrate Connections

138

3.6.1 Ultra-High Off-Chip Frequency and High Bandwidth Operation

138

3.6.1.1 Coaxial Interconnects

138

3.6.1.2 Electrical and Optical Interconnects

138

3.6.2 Microfluidic Interconnects for Thermal Management

140

References

142

Chapter 4: Advanced Wire Bonding Technology: Materials, Methods, and Testing

146

4.1 Introduction

146

4.2 Interconnection Requirements

150

4.3 Bonding Principles

154

4.3.1 Wire Bonding Types

154

4.3.2 Thermocompression Bonding

156

4.3.3 Ultrasonic Bonding

159

4.3.4 Thermosonic Bonding

159

4.3.5 Other Techniques

161

4.3.6 Machine Optimization

162

4.4 Copper Ball Bonding

164

4.5 Materials

165

4.5.1 Bonding Wire

165

4.5.2 Bond Pads

170

4.5.3 Gold Plating

173

4.5.3.1 Electroplated Gold

173

4.5.3.2 Electroless Autocatalytic Gold

173

4.5.4 Pad Cleaning

174

4.6 Testing

177

4.7 Quality Assurance

184

4.8 Reliability

186

4.8.1 Intermetallics

186

4.8.2 Cratering

187

4.9 Design (Wire Spacing, Loop Height)

190

4.10 Advanced Concepts

193

4.10.1 Fine Pitch

193

4.10.2 Soft Substrates

195

4.10.3 Higher Frequency Bonding

198

4.10.4 Stud Bumping

203

4.10.5 Extreme Temperature Environments

203

4.11 Summary

209

References

209

Chapter 5: Lead-Free Soldering

214

5.1 Main Stream Lead-Free Soldering Practice

214

5.1.1 Driver of Lead-Free Soldering

214

5.1.2 Prevailing Lead-Free Solder Alloys

216

5.1.3 Lead-Free Surface Finishes

217

5.2 Physical and Mechanical Properties of Solder Joints

217

5.2.1 Melting Behavior

217

5.2.2 Creep Behavior

219

5.3 Intermetallic Compounds (IMC)

221

5.3.1 Effect of IMC on Joint Strength

222

5.3.2 Effect of Cu Content in Solder Alloy on IMC Stability on Ni Metallization

222

5.3.3 Effect of Additives on IMC

225

5.3.4 Effect of Metallization and Alloy on IMC

227

5.3.5 Effect of Heat History on IMC

228

5.4 Microstructure Evolution

229

5.4.1 Grain Coarsening

229

5.4.2 Creep-Fatigue

230

5.5 Temperature Cycling Reliability

230

5.5.1 Effect of Cycling Condition and Alloy on Reliability

230

5.5.2 Effect of PCB Metallization on Reliability

231

5.5.3 Effect of Ag Content on Reliability

232

5.6 Fragility

234

5.6.1 Effect of Ag Content on Fragility

234

5.6.2 Effect of Dopant on Fragility

235

5.6.3 Effect of Thermal Cycling Aging and Metallization on Fragility

237

5.7 Electromigration

237

5.8 Tin Whisker

240

5.8.1 Tin Whisker Growth Mechanism

241

5.8.2 Effect of CTE Mismatch on Tin Whisker

242

5.8.3 Effect of CuSn IMC on Tin Whisker

242

5.8.4 Other Means of Alleviating Tin Whisker Formation

243

5.9 Trends and Status of Novel Lead-Free Solder Alloys

243

5.9.1 Low Temperature Solder Alloys

243

5.9.2 Low Cost High Reliability Solder Alloys

244

5.9.3 High Temperature High Reliability Solder Alloys

246

5.10 Summary

246

References

248

Chapter 6: Thin Die Fabrication and Applications to Wafer Level System Integration

252

6.1 Introduction

252

6.2 Temporary Bonding/De-bonding and Thin Wafer Handling

253

6.3 Wafer Thinning

256

6.3.1 Motivation for Wafer Thinning

256

6.3.2 Wafer Thinning Processes, Tools, and Associated Defects

258

6.3.2.1 Mechanical Thinning

258

General Processes

258

Backgrinding Tools, Mechanism, and Defects

259

6.3.2.2 Chemical Mechanical Polishing (CMP)

266

General Processes

266

6.3.2.3 Wet Etching

271

HNA as an Etchant

271

TMAH as an Etchant

274

6.3.2.4 Dry Etching

275

Si Etching by SF6/O2 Plasma

275

Other Plasma and Dry Silicon Etching Processes

277

Plasma Etching Key Performance Parameters and Defectivity

278

6.4 TSV Revealing, Backside Processes, and Dicing

280

6.4.1 TSV Revealing

280

6.4.2 Backside RDL and Bumping

283

6.4.3 Dicing and Isolation

286

6.4.3.1 Blade Dicing

286

6.4.3.2 Laser Ablation

288

6.4.3.3 Stealth Dicing by Laser

292

6.5 Thin Dies for Wafer Level System Integration

293

6.5.1 Integrated Fan-Out Wafer Level System Integration, InFO

294

6.5.2 Chip-on-Wafer-on-Substrate, CoWoS

296

6.5.3 Summary on WLSI

297

References

298

Chapter 7: Advanced Substrates: A Materials and Processing Perspective

301

7.1 Introduction

301

7.1.1 A Brief History: from PCBs to Substrates

306

7.2 Ceramic Substrates

308

7.3 Organic Substrates

308

7.3.1 2L PBGA Substrates

310

7.3.2 4L PBGA Substrates

313

7.3.3 6L PBGA Substrates

314

7.3.4 High Density Interconnect Substrates: HDI

316

7.3.4.1 2L Via in Pad (ViP) Substrates (2L HDI)

316

7.3.4.2 1+2+1 Substrates (4L HDI)

317

7.3.4.3 1+4+1 Substrates (6L HDI)

318

7.3.4.4 2+2+2 Substrates (6L HDI)

318

7.3.5 Single-Sided Substrates

319

7.3.6 Embedded Trace Substrates

319

7.3.7 Substrate-Less Packages Based on Substrate Technology

321

7.3.8 Coreless Substrates

323

7.4 Tape Ball Grid Array: TBGA

325

7.5 PBGA Substrate Trends

325

7.5.1 Low Cost Dielectrics

325

7.5.2 Low Cost Solder Masks

326

7.5.3 Thin Substrates, Thin Dielectrics

326

7.5.4 Low Expansion Dielectrics

327

7.5.5 Surface Finishes

328

7.5.5.1 Electroplated Nickel Gold

328

7.5.5.2 OSP and AFOP

328

7.5.5.3 ENEPIG and EPIG

329

Tin-Based Surface Finishes

329

Immersion Tin: iT

330

Electroplated Tin: eT and Binary Solders

330

Super Juffit

330

7.6 FCBGA Substrates

332

7.7 Specialty Substrates

335

7.7.1 RF Modules

336

7.7.2 High Performance Substrates with Low Dielectric Constant

336

7.7.3 Substrates with Embedded Components

337

7.7.3.1 Buried Passives Substrates

338

7.7.3.2 Embedded Die and Embedded Passives Substrates

338

7.7.3.3 Cavity Substrates

341

References

342

Trademarks

343

Chapter 8: Flip-Chip Underfill: Materials, Process, and Reliability

344

8.1 Introduction

344

8.2 Conventional Underfill Materials and Process

347

8.3 Reliability of Flip-Chip Underfill Packages

350

8.4 New Challenges to Underfill

353

8.5 No-Flow Underfill (NUF)

356

8.5.1 Approaches of Incorporating Silica Fillers into No-Flow Underfill

360

8.6 Molded Underfill

363

8.7 Wafer Level Underfill

366

8.8 Underfill for 3D Stacks

372

8.9 Nanocomposites Underfill

375

8.10 Summary

377

References

379

Chapter 9: New Development Trend of Epoxy Molding Compound for Encapsulating Semiconductor Chips

385

9.1 Introduction

385

9.2 Introduction to Epoxy Molding Compounds

388

9.2.1 Epoxy Resin

389

9.2.2 Hardener

389

9.2.3 Inorganic Filler

390

9.2.4 Silane-Coupling Agent

391

9.2.5 Flame Retardant

392

9.2.6 Other Additives

392

9.3 Beyond Transfer Molding

393

9.3.1 Granule Epoxy Molding Compound

393

9.3.2 Sheet Epoxy Molding Compound

397

9.4 Epoxy Molding Compound for Advanced Packages

399

9.4.1 Flip Chip Application

399

9.4.1.1 Filling Performance

399

9.4.1.2 Warpage Management

401

9.4.1.3 Bump Protection for SiP Application

403

9.4.2 Cu/Ag-Wire Application

404

9.4.2.1 Analysis of Wire Bonding Part After HAST

404

9.4.2.2 Corrosion Mechanism of Wire Bonds

407

9.4.2.3 HTSL Results for EMC

409

9.4.3 Development of EMCs for Premold L/F and Molded Substrate

410

9.4.3.1 Pre-mold L/F

410

9.4.3.2 Molded Substrate

412

9.4.4 WLP Application

415

9.4.4.1 EMC for FOWLP

415

9.4.5 High Temperature Application

420

9.4.5.1 Introduction

420

9.4.5.2 EMC Materials with High Heat Resistance

421

9.4.6 Study of Epoxy Molding Compound for Fingerprint Sensor

425

9.4.6.1 Introduction

425

9.4.6.2 Type of Fingerprint Sensor

426

9.4.6.3 Principle of Fingerprint Sensor

427

9.4.6.4 EMC for Fingerprint Sensor

428

9.5 Summary

430

References

430

Chapter 10: Electrically Conductive Adhesives (ECAs)

432

10.1 Introduction

432

10.2 Description of Anisotropically Conductive Adhesives

432

10.2.1 Overview

432

10.2.2 Adhesive Matrix

433

10.2.3 Conductive Fillers

434

10.2.3.1 Solid Metal Particles

434

10.2.3.2 Non-Metal Particles with Metal Coating

434

10.2.3.3 Metal Particles with Insulating Coating

434

10.2.3.4 Nanoparticles

435

10.2.3.5 Self-Aligned Magnetic Particles

436

10.2.3.6 Nanofiber/Solder

436

10.3 Flip Chip Applications Using Anisotropically Conductive Adhesives

436

10.3.1 ACA Flip Chip for Bumped Dies

437

10.3.1.1 Two Filler Systems

437

10.3.1.2 Coated Plastic Filler

437

10.3.1.3 Solder Filler Systems

438

10.3.1.4 Ni Filler

439

10.3.2 ACA Bumped Flip Chips on Glass Chip Carriers

440

10.3.2.1 Selective Tacky Adhesive Method

440

10.3.2.2 The MAPLE Method

441

10.3.3 ACA Bumped Flip Chips for High Frequency Applications

441

10.3.4 ACA for Unbumped Flip Chips

442

10.3.4.1 Gold-Coated Nickel Filler

442

10.3.4.2 Ni/Au-Coated Silver Filler

443

10.3.4.3 Metal Pillar ACF

443

10.3.5 ACAs for CSP and BGA Applications

444

10.3.5.1 Double-Layered ACF Film

444

10.3.5.2 Ceramic Chip Carriers vs. Organic Chip Carriers

445

10.3.6 Failure Mechanism

445

10.3.6.1 Oxidation of Non-Noble Metals

445

10.3.6.2 Loss of Compressive Force

446

10.4 Description of Isotropic Conductive Adhesives (ICAS)

446

10.4.1 Percolation Theory of Conduction

446

10.4.2 Adhesive Matrix

447

10.4.3 Conductive Fillers

447

10.4.3.1 Silver Particles

448

10.4.3.2 Silver-Coated Copper Particles

448

10.4.3.3 Low-Melt Fillers

448

10.4.3.4 Nanoparticles

449

Silver Nanowires

449

Carbon Nanotubes (CNTs)

449

Copper Nanoparticles

450

AgNPs/Reduced Graphene Oxide (rGO)

450

In Situ NanoAg-Coated Silver Flakes

451

10.5 Flip Chip Applications Using Isotropic Conductive Adhesives

451

10.5.1 Polymer Bump Flip Chip

452

10.5.2 Metal-Bumped Flip Chip Joints

452

10.5.3 ICA Process for Unbumped Chips

453

10.6 Surface Mount Applications

454

10.7 ICAs for CSP Applications

455

10.8 ICAs for Advanced Packaging Applications

456

10.8.1 Solar Cell

456

10.8.2 3D Stacking

456

10.8.3 Microspring

458

10.8.4 ICAs for Printed Circuit Board Applications

459

10.9 High-Frequency Performance of ICA Joints

461

10.10 Reliability of ICA Joints

462

10.11 Recent Advances on ICAS

464

10.11.1 Improvement of Electrical Conductivity

464

10.11.2 Eliminate Lubrication Layer

465

10.11.3 Increase Shrinkage

465

10.11.4 Transient Liquid Phase Fillers

465

10.11.4.1 Incorporation of Intrinsic Conducting Polymers

466

10.11.4.2 Polymer Resin Alloy

466

10.11.5 Improvement of Contact Resistance Stability

467

10.11.5.1 Causes for Resistance Increase

467

10.11.5.2 Approaches to Stabilize Contact Resistance

467

Reduce Moisture Absorption

467

Use of Corrosion Inhibitors

468

Use of Oxygen Scavengers

469

Sharp-Edge Filler Particles

469

10.11.6 Improvement of Impact Performance

470

References

472

Chapter 11: Die Attach Adhesives and Films

480

11.1 Die Attach Materials

480

11.1.1 Trends in Electronic Packaging

480

11.1.2 Trends in Die Attach Materials

482

11.1.3 Demands on Die Attach Materials

484

11.1.4 Die Attach Paste

485

11.1.5 Adhesive Tape for LOC Package

486

11.1.6 Die Attach Film

487

11.1.7 The Future of Advanced Die Attach Film

488

11.1.7.1 Die Attach Film for Advanced BGA/CSP

488

11.1.7.2 Dicing/Die Attach Dual Functioning Film

489

11.1.7.3 Die Attach Film for Multi-Layered Packaging Process

489

11.2 Development of Die Attach Film with High Performance for Package Cracking Resistance and Advanced Package

492

11.2.1 Introduction

493

11.2.1.1 Technical Issues of Silver Paste

493

11.2.1.2 Package Crack

493

11.2.1.3 Advanced Packages

495

11.2.2 Design of Base Resin for Die Attach Film

495

11.2.3 Die Attach Film for Package Crack Resistance

497

11.2.3.1 Water Absorption of Base Resin

497

11.2.3.2 Peel Strength

497

11.2.3.3 Package Cracking Resistance

501

11.2.4 Die Attach Film for Advanced Package

502

11.2.4.1 Low Tg and Low Water Absorptivity of Polyimide Base Resin

502

11.2.4.2 Low Stress (Silicon Chip Warpage)

505

11.2.4.3 Low Attaching Temperature

507

11.2.4.4 Properties of Die Attach Film

508

11.3 Development of Die-Bonding Film by Nano-Structure Control and Mathematical Optimization

510

11.3.1 Material System Based on Reaction-Induced Phase Decomposition

510

11.3.2 Material Design System Based on Reaction-Induced Phase Decomposition

512

11.4 Technologies for Next-Generation Packages

517

References

519

Chapter 12: Thermal Interface Materials

522

12.1 What Is Thermal Interface Resistance?

523

12.2 Recent Development in Thermal Interface Modeling

526

12.2.1 Model to Predict Thermal Conductivity (kTIM)

528

12.2.2 Rheological Model to Predict TIM Bondline Thickness (BLT)

529

12.2.3 Effect of Particle Volume Fraction on Bulk TIM Thermal Resistance

531

12.2.4 Model to Predict Thermal Contact Resistance (Rc)

533

12.3 Reliability Consideration for Polymeric TIMs

535

12.4 Solder Alloy-Based TIMs

537

12.5 Nanotechnology-Based TIMs

538

12.6 Characterization of TIM Thermal Performance

541

12.7 Future Directions

542

References

542

Chapter 13: Embedded Passives

547

13.1 Introduction

547

13.1.1 Passives in Power Modules

547

13.2 Embedded Inductors

551

13.2.1 Introduction

551

13.2.1.1 Limitations of Discrete Inductors and Air Core Spiral Inductors

551

13.2.1.2 Advantages of Magnetic Inductors as Embedded Inductors

552

13.2.1.3 Inductor Designs

553

13.2.1.4 Requirements and Survey for the Magnetic Core Materials

554

13.2.2 Modeling and Design Considerations of Magnetic Inductors

555

13.2.2.1 Inductance

556

13.2.2.2 Resistance

558

13.2.2.3 Quality Factor

560

13.2.2.4 Saturation Current

560

13.2.3 Embedded On-package and On-chip Inductors: Experiments and Analyses

561

13.2.3.1 On-chip Inductor Results

561

13.2.3.2 On-package Inductor Results

563

13.2.3.3 Fundamental Trade-Offs of Magnetic Inductors

565

13.2.4 Future Directions of the Embedded Magnetic Inductors

566

13.2.4.1 Potential Applications for the Integrated Magnetic Inductors

566

13.2.4.2 Survey of Inductor Works in Literature

567

13.2.4.3 Challenges

567

13.2.4.4 Direction for Embedded Inductors

569

13.3 Capacitor Technologies

570

13.3.1 Discrete Capacitors

570

13.3.1.1 MLCC

571

13.3.1.2 Electrolytic Capacitors with Sintered Porous Ta and Etched Al Foils

573

13.3.2 Integrated Capacitors

576

13.3.2.1 Thin-Film Capacitors

576

13.3.2.2 Trench Capacitors

577

13.3.3 Emerging Nanoscale Capacitors

578

13.3.4 Future of Power Capacitors

581

13.4 Embedded Resistors

581

13.4.1 Introduction

581

13.4.2 Fundamental of Resistors

582

13.4.3 Design, Materials, and Processing Technologies

584

13.4.3.1 Design

584

13.4.3.2 Materials and Processes

585

13.4.4 Challenges and Solutions with Embedded Resistors

589

13.4.4.1 Yield

589

13.4.4.2 High Temperature and Humidity Stability

589

13.4.4.3 Precision Patterning with Laser Trimming

590

13.4.4.4 Precision Patterning with Dry Etching

590

13.5 Conclusions

591

References

592

Chapter 14: Advanced Bonding Technology Based on Nano- and Micro-metal Pastes

599

14.1 Introduction

600

14.2 Silver Pastes

602

14.2.1 From Micro-Ag Paste to Nano-Ag Pastes

602

14.2.2 Performance of Joints Based on Nano-Ag Pastes

603

14.2.2.1 Sintering Pressure in Nano-Ag Pastes

604

14.2.2.2 Sintering Temperature and Time in Nano-Ag Pastes

605

14.2.2.3 Heating Rate in Nano-Ag Pastes

606

14.2.3 From Nano-Ag Pastes to Hybrid Silver Pastes

607

14.2.3.1 The Fabrication Methods of Hybrid Ag Pastes

609

14.2.3.2 The Joint Performance and Reliability of Hybrid Ag Pastes

611

14.3 Copper Pastes

615

14.3.1 Synthesis of Cu Pastes

616

14.3.2 Anti-oxidation Methods for the Sintering of Cu Pastes

617

14.3.3 The Joint Performance of Cu Pastes

622

14.4 Other Bonding Techniques

627

14.5 Conclusion

627

References

628

Chapter 15: Wafer Level Chip Scale Packaging

637

15.1 Introduction

637

15.2 Definition of Wafer Level Chip Size Packaging

638

15.3 Materials and Processes for Bumping and Redistribution Technology

642

15.3.1 Metals for Wafer Bumping

642

15.3.1.1 Under Bump Metallization

643

15.3.1.2 Bumping Technologies

644

15.3.1.3 Bump Metallurgy

654

15.3.1.4 Plating of Alloys

659

15.3.1.5 Yield and Reliability

664

15.3.2 Photoresists for Wafer Bumping

665

15.3.3 Processing of Photoresist and Photopolymers

669

15.3.4 Polymers for Redistribution Layers (RDL)

674

15.3.4.1 Chemistry of Polymers for RDL

684

15.3.4.2 Adhesion and Copper Diffusion into Polymers

689

15.4 Materials for Integrated Passives into WLP

694

15.5 Influence of the Polymer to the Reliability of WLP

698

15.6 Conclusion

701

References

702

Chapter 16: Microelectromechanical Systems and Packaging

706

16.1 Introduction

706

16.2 Packaging of MEMS

709

16.3 MEMS for Packaging

719

16.4 Packaging for MEMS

724

16.5 Opportunities and Major Challenges

729

16.6 Conclusions

735

References

736

Chapter 17: LED Die Bonding

741

17.1 LED Chips and Packaging

741

17.1.1 Introduction

741

17.1.2 LED Chips

742

17.1.3 Packages and Packaging

743

17.1.4 Packaging Materials

744

17.2 Die Bonding Materials

744

17.2.1 Material Requirement

745

17.2.2 Types of Die Bonding Materials

746

17.2.2.1 Adhesives

746

Silver DAAs

747

Optical DAAs for Low- and Mid-Power LEDs

747

Optical DAAs for High-Power LEDs

752

17.2.2.2 Adhesive Films

756

17.2.2.3 Solder Materials for LED Die Bonding

757

17.2.2.4 Low-Temperature Sintering Silver Pastes

757

17.3 Packaging and Die Bonding Materials

759

17.3.1 SMD LEDs

759

17.3.1.1 Optical Role of DAAs for Low- and Mid-Power LEDs

760

17.3.1.2 Nonuniformity in SMD LEDs

762

Materials Parameters

763

Process Parameters

763

Package Parameters

766

17.3.1.3 Optimal SMD LEDs Design

767

Guidance of OC-DAAs and WDAAs Design

767

Optimal Selection of Packages

768

Optimal Packaging Processes and Parameters

768

17.3.2 COB LEDs

768

17.3.3 FC LEDs and CSP

770

17.3.4 Wafer-Level CSP LEDs

771

References

772

Chapter 18: Medical Electronics Design, Manufacturing, and Reliability

775

18.1 Introduction

775

18.1.1 Review of Medical Electronic Products Classification

777

18.1.2 Class I Medical Devices

778

18.1.3 Class II Medical Devices

778

18.1.4 Class III Medical Devices

779

18.2 Key Drivers for Growth in Medical Electronics

779

18.2.1 Aging Population

779

18.2.2 Demographic Shift Toward Tech-Competent User Base

780

18.2.3 Target Market Moving from Treatment to Detection and Prevention

781

18.2.4 Availability of Advanced Electrical Content

781

18.3 Design Concepts and Enabling Technologies

783

18.3.1 Low Power Consumption

783

18.3.2 Miniaturization

783

18.3.3 Growth and Standardization of Wireless

785

18.3.4 Sensors, Accelerometers, and Medical Monitoring

786

18.3.5 Advanced Wafer Fabrication Availability

787

18.3.6 Silicon Integration and Electronic Packaging

788

18.4 Implantable Medical Electronics Design and Reliability

790

18.4.1 Implantable Medical Electronic Applications

790

18.4.2 Development Process

792

18.4.3 Environmental Conditions and Constraints

794

18.4.4 Manufacturing Stresses

795

18.4.5 Shipping and Storage

796

18.4.6 Implant Conditions

796

18.4.7 Longevity Requirements

797

18.4.8 Reliability Requirements

797

18.4.9 System Level Failure Modes

799

18.4.10 Commonly Encountered Failure Mechanisms

801

18.5 Qualification

801

18.5.1 Qualification Overview

803

18.5.2 Qualification, Verification, and Validation

804

18.5.3 Manufacturing Process Controls

804

18.5.4 Component and Material Qualification

807

18.5.5 Electronic Module Qualification

808

18.5.6 Finished Device Qualification

809

18.5.7 Supplier Controls

809

18.6 Manufacturing and Process Development

810

18.6.1 Manufacturing Process and Materials

810

18.6.2 Beyond 6-Sigma: Developing Transfer Functions

811

18.6.3 Change Management

813

18.7 Implantable Medical Device Challenges

815

18.7.1 CMOS Scaling

815

18.7.2 Lead-Free Requirements Impact

815

18.7.3 Increasing Device Complexity

816

18.7.4 External System Interfaces

816

18.7.5 Qualification Strategies for the Future

817

References

818

Chapter 19: Flexible and Printed Electronics

820

19.1 Introduction

821

19.2 Flexible Thin-Film Transistor Backplane Technology

821

19.2.1 Hydrogenated Amorphous Silicon TFTs

823

19.2.2 Low-Temperature Polycrystalline Silicon TFTs

825

19.2.3 Oxide TFTs

827

19.2.4 Organic TFTs

832

19.2.5 Fabrication of Flexible TFTs

836

19.2.5.1 Lamination-Debonding Approach

837

19.2.5.2 Coat (Deposit)-Release Approach

837

19.2.5.3 Transfer Approach

840

19.3 Printing Technology for Flexible Electronics Applications

842

19.3.1 Printing Technologies

842

19.3.1.1 Gravure, Gravure-Offset, Flexographic, and Rotary Screen Printing

843

19.3.1.2 Microcontact Printing, Nanoimprint, and Transfer Printing

845

19.3.1.3 Slot-Die and Inkjet Printing

846

19.3.2 Subtractive and Additive Printing Processes

852

19.3.2.1 Subtractive Printing Process

852

19.3.2.2 Additive Printing Process

853

19.4 Outlook

857

References

857

Chapter 20: Silicon Solar Cell Metallization Pastes

862

20.1 Silicon Solar Cells

862

20.1.1 Crystalline Silicon Solar Cells

863

20.1.2 Development Trend

865

20.2 Metallization

865

20.2.1 Front-Side Metallization

866

20.2.1.1 Requirement

866

20.2.1.2 Conventional Silver Pastes and Application Methods

866

20.2.1.3 Novel Silver Pastes with Silver Nanoparticles for Screen Printing

868

20.2.1.4 Glass Frits and Nano-Frits

872

20.2.1.5 Novel Methods for Formation of Silver Electrodes

875

20.2.1.6 Copper/Nickel for Front Metallization

876

20.2.1.7 Screen-Printable Low-Temperature Copper Pastes for Front Busbars

878

20.2.2 Back-Side Metallization

879

20.2.2.1 Aluminum and Aluminum/Silver Pastes for Back Surface Field

879

20.2.2.2 Local BSF for Passivated Emitter and Rear Solar Cells

879

20.2.3 Future of Metallization Materials and Techniques

880

20.3 Solar Cell Modules

881

20.3.1 Components of Solar Cell Modules

881

20.3.2 Manufacturing Process

882

20.3.3 Development Trends

882

References

883

Chapter 21: Nano-metal-Assisted Chemical Etching for Fabricating Semiconductor and Optoelectronic Devices

885

21.1 Introduction

885

21.1.1 Challenges of Top-Down Nanofabrication

887

21.2 Background on Metal-Assisted Chemical Etching (MacEtch)

889

21.2.1 History of MacEtch

889

21.2.2 Chemistry

891

21.2.3 Metal Catalysts

894

21.2.4 Etchant

895

21.2.5 Crystallographic Dependencies

896

21.2.6 Microporous Silicon

897

21.3 Fabrication with MacEtch

899

21.3.1 Pores and Nanowires

900

21.3.2 Channels

902

21.3.3 3D Fabrication

903

21.3.4 Helical/Spiral Structures

907

21.3.5 Electroless Filling MacEtch Templates

912

21.4 Devices and Applications of MacEtch

915

21.4.1 X-Ray Diffractive Optics

915

21.4.2 Thru-Silicon-Via (TSV)

917

21.4.3 MEMS

920

21.4.4 Photovoltaics

921

21.5 Practical Processing Considerations

921

21.5.1 Catalyst and Process Design

921

21.5.2 Etch Stop

922

21.5.3 Fluid Flow Induced Motion and Pre-etch HF Dips

922

21.5.4 Adhesion Layer Thickness

923

21.5.5 Top Layer of Catalyst Stack

924

21.5.6 Catalyst Cleanliness and Etchant Stability

924

References

924

Chapter 22: Characterization of Copper Diffusion in Through Silicon Vias

929

22.1 Cu Diffusion in Through Silicon Vias

929

22.1.1 Barrier Materials for Preventing Cu Diffusion

930

22.1.2 Evaluation of Barrier Layer Stability

931

22.1.3 SIMS Depth Profiling of Cu Diffusion

932

22.2 Effect of Interfacial Multilayer

934

22.2.1 Effect of Insulation Layer

936

22.2.2 Effect of Si Surface Roughness

938

22.2.3 Effects of Barrier Layer and Cu Source Layer

939

22.3 Phase Transition in Thermal Annealing

941

22.4 Factor Rank for Cu Diffusion

945

22.4.1 DOE for Rank Analysis

946

22.4.2 Diffusion Depth versus Annealing Time

949

22.4.3 Rank Analysis of Different Layers

950

References

954

Index

958