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Foreword 

In recent years great efforts have been made in industry to reduce complexity of 
production processes and to lower setup times and setup cost. Still, we have ob- 
served numerous production facilities where lot-sizing continues to play a major 
role. Also, the issue of lot-sizing spans a much larger area than merely minimizing 
the sum of setup and holding costs as it also provides the clue for a better utiliza- 
tion of resources. For example, the author is aware of a case where improved lot- 
sizing and scheduling increased output by more than 20%! 

Still the question remains which lot-sizing model to choose. There is a vast 
number of lot-sizing models in the literature either based on a discrete time axis or 
on a continuous times axis. While the former is easier to solve in general aggrega- 
tion of time often results in missing "optimal" solutions or even feasible solutions 
(although these might exist). Continuous time models, despite being able to cap- 
ture more details, often are complex non-linear models resulting in prohibitive 
computational efforts for its solution. 

This was the situation when Christopher Suerie started his PhD project. In the 
course of the project he came up with a number of excellent ideas to improve 
modeling capabilities of discrete time model formulations. In the end he has been 
able to claim that now mixed integer linear model formulations for the capacitated 
lot-sizing problem with linked lot sizes (CLSPL) as well as the proportional lot- 
sizing and scheduling problem (PLSP) exist capturing details that make continu- 
ous time model formulations unnecessary. To be more precise, Christopher Suerie 
has shown how to effectively model restrictions on period overlapping lot sizes 
(campaigns), namely 

minimal and maximal production amounts, 
minimal resource utilizations throughout campaign production and 
production amounts that are integer multiples of a given batch size. 

Furthermore, he has developed a model formulation that mimics period over- 
lapping setup times. He also demonstrates that all his proposals are solvable by 
state-of-the-art Mixed Integer Programming solvers with rather modest computa- 
tional efforts - thus making it most appealing for applications in industrial prac- 
tice. 

In the end this PhD thesis not only contributes to a number of single issues that 
have been treated incorrectly or ineffectively in the literature but provides a com- 
prehensive, unifying modeling framework for single stage lot-sizing and schedul- 
ing problems directly applicable in the process industries. It is an excellent piece 
of research with great potentials for successful applications and worth reading 
from the first line until the very end. 

Hamburg, January 2005 Hartmut Stadtler 



This dissertation is the result of a four-year research effort conducted at the de- 
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1 Introduction 

1 .I Motivation 

Different modeling paradigms often collide at the interface of short-term, opera- 
tional production planning and mid-term production planning. Mid-term plans are 
most often based on a discrete time scale made of weekly or monthly buckets 
without too much detail. On the other hand, short-term operational planning needs 
a lot more detail and therefore comprises time buckets with the size of days or 
shifts - or even better - is not attached to a fixed grid of time buckets, that is a 
continuous time scale. 

Both paradigms have their legitimacy in their respective settings. For mid-term 
planning it is sufficient to know, that e.g, products A, B and C will be produced in 
the quantities 50, 80 and 30 units in week 17. On the other hand, it is important to 
know that the setup change from product A to B for the stamping machine needs 
to take place on e.g. Tuesday between 2.30 p.m. and 5 p.m., because setup person- 
nel has to be scheduled for this event. 

Models and algorithms for both, production planning on a discrete time scale 
and for production planning on a continuous time scale, are known in large num- 
bers. A missing link and the focus of this thesis will be the representation of arbi- 
trary (continuous) plans on a discrete time scale. 

From a theoretical point of view this idea is very appealing, as it would allow to 
combine short-term and mid-term planning into one modeling approach. If a tele- 
scopic time scale with shorter time buckets at the beginning, to capture the detail 
necessary for short-term production planning, and bigger time buckets towards the 
end of the planning horizon is used, both planning steps can be accomplished with 
only one model. As a consequence, the structural differences which often compli- 
cate communication at the interface of short-term and mid-term production plan- 
ning are reduced. 

Anyhow, not a global model that solves all kinds of production planning prob- 
lems will be presented here, but rather several important building blocks, primar- 
ily intended for mid-term production planning and thus bucket-oriented will be in- 
troduced. These building blocks may be used as different extensions to standard 
lot-sizing models. They are motivated by practical production planning problems. 
Moreover, built together into one model, it will be possible to represent arbitrary 
continuous production plans in a bucket-oriented setting. 

The application of these planning models, which first comes into mind, is proc- 
ess industries. Furthermore, also discrete production environments might be eligi- 
ble for use of at least some of the building blocks that will be presented. This 



2 1 Introduction 

stems not only from the analogy between discrete production and process indus- 
tries,' but can also be seen from the case descriptions which follow in section 1.3. 

1.2 Some Definitions 

In different industries different terms are used - from a planning point of view - in 
the same or similar context. Here the focus will be on the terms "lot-sizing" and 
"campaign planning" first, which are in fact terms originating from totally differ- 
ent sources. 

The term "lot-sizing" has its roots in a discrete production environment. Lot- 
sizing is the arrangement of demands for the same product in different periods to a 
single production order ("l~t").~ This means, that customer orders (or anonymous 
demand) with different due dates for a certain product are combined to form a 
production order. The reasoning is, that each production order is usually associ- 
ated with a certain fixed cost (setup cost). If customer orders were produced as 
demanded ("lot-for-lot"-production), this would strongly affect costs. Further- 
more, it would affect capacity, because setups will generally consume also a fixed 
amount of capacity. To avoid that, customer orders are combined. The result of 
lot-sizing is a production plan, which shows when to produce (e.g., in week 13) 
and how much (e.g., 100 units). 

The term "campaign planning" on the other hand is typically used in the proc- 
ess industries. There, two variants of campaigns have to be distinguished: single- 
product campaigns and multi-product  campaign^.^ In analogy to lot-sizing a sin- 
gle-product-campaign can be defined as a production order, which comprises sev- 
eral customer orders (or anonymous demand) that share an unique setup state. 
With respect to the production environment there may be several specialties or ad- 
ditional constraints. The most important one is, that the production order may be 
made of several batches, with a batch defined as a combination of a production 
amount and a certain task.4 The batch size is often fixed and determined by the 
size of the production resource (e.g., a tank). Anyhow, in general - at least at this 
level of abstraction - there is not a big difference between a lot in lot-sizing and a 
single-product campaign in campaign planning. 

Multi-product campaigns do not fit into the lot-sizing scheme as easily. Here, a 
campaign consists of several products requiring different setup states, but cam- 
paigns are built such, that setup operations within a campaign require much less 
effort (cost andlor time) than setup operations between  campaign^.^ An analogy in 
lot-sizing is the grouping of products into families such that only minor setups are 

Cf. Volj and Witt (2003) pp. 75-81. 
E.g., Chase et al. (1998) pp. 648-649, Giinther and Tempelmeier (1997) p. 182, Guten- 
berg (1983) p. 201 and Silver et al. (1998) p. 198. 
Cf. Blomer (1999) p. 16 and Overfeld (1990) pp. 87-88. 
Cf. Schwindt and Trautmann (2000) p. 502. 
Cf. Overfeld (1990) pp. 87-88. 
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necessary between members of a product family and major setups are necessary 
between fa mi lie^.^ 

Moreover, a term used in discrete production as well as in the process indus- 
tries is "batching". Unfortunately the meaning is different in both contexts. In the 
process industries a batch is defined as a combination of a production amount and 
a certain task. If the batch size is not determined by the production resources, the 
decision on batch sizes is called batching here (first step).' In a second step, 
batches requiring the same resource configuration (setup) are combined to form a 
campaign. The reason why production planning in the process industries is often 
in batches and the batches are not put together to form a bigger batch for planning 
purposes is, that resources or tanks often limit certain production tasks.8 In dis- 
crete production however, the second step is referred to as batching. Here, the 
combination of production orders belonging to the same order family is called 
b a t ~ h i n g . ~  For a more extensive discussion we refer to Volj and Witt (2003), who 
discuss the different meanings of batching in discrete production and process in- 
dustries as well as find and define analogous terms in these two fields.1° 

In the remainder of this thesis we will stick to the following nomenclature: 
A lot (or lot size) is the production amount of a production order which is pro- 
duced in one production run without changing the setup state. 
As there are only settings in the scope of this thesis which require the planning 
of single-product campaigns, the term "campaign" can be used as a synonym to 
the term "lot". 

Anyhow, when literature from the different fields is discussed in chapters 2 and 4, 
the term "lot" will be used, if the lot size is produced within a period (time 
bucket), whereas the term "campaign" will be used, if the lot extends over several 
periods. But this is only not to confuse readers familiar with only one field and 
one should keep in mind, that generally - at this level of abstraction - there is no 
big difference between lot-sizing and campaign planning, apart from the latter re- 
quiring some side constraints. 

Furthermore, we will refrain from using the term "batching" to avoid confusion 
of the reader, because this term - as mentioned above - has very different mean- 
ings in discrete production and in the process industries. 

1.3 Case Studies 

The production planning models studied in this thesis are not only interesting from 
a theoretical point of view, but also relevant from a practitioner's perspective, as 
the following case descriptions illustrate. 

Cf. Potts and van Wassenhove (1992) p. 397. 
Cf. Trautmann (2001) p. 5. 
Cf. VoR and Witt (2003) pp. 76-77, 8 1. 
Cf. Potts and Kovalyov (2000) pp. 228,231 and Vol3 and Witt (2003) pp. 78, 81. 

lo Cf. VoR and Witt (2003) pp. 75-81. 
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Napkin production 
The production process consists of three stages. At the first stage paper is pro- 
duced in a continuous process. The second processing step - and in this case 
the bottleneck - is the conversion of paper into napkins. Here, an emblem or 
design is printed on the paper, which is then folded into shape. The folding op- 
eration involves a difficult setup step, which takes up to 36 hours. At the third 
stage the folded napkins are wrapped and packaged." 

Although production plans in this case assume a period length of approxi- 
mately one month, setup operations consume a substantial portion of time (5 % 
of capacity) and therefore need to be accounted for as accurately as possible. 
Otherwise production capacity may be lost or orders that should have been 
taken are declined. 
Self-adhesive laminate 
Self-adhesive laminates comprise of two layers. The top layer is formed by the 
face material made of paper or a synthetic, which is usually coated. On the 
back-side of the top layer an adhesive is applied. The bottom layer is mostly 
made of paper, which is silicon coated for easier release of the top layer.12 

In this case the bottleneck to be planned for is the coating of the face mate- 
rial. The planning horizon is three weeks and the varnish/paste coater is utilized 
five days per week and 24 hours per day. The period length is one day and the 
setup time is about 5 % of capacity. It is not only important to account for setup 
times correctly because of the tight capacity situation, but also because setups 
waste energy and raw materials, which go into scrap.13 
Production in a chemical plant I 
A chemical plant is considered in this case. Here, a reactor has to be planned 
for. This reactor can operate in different modes, producing exactly one distinct 
product in each mode. Changeovers are not only very costly, but also consume 
a considerable portion of available capacity. The planning horizon comprises 
one to three years with monthly buckets. Production plans are only accepted by 
the planners, if they meet certain criteria. These are e.g. that campaigns have to 
obey a minimal size of 300 tons or that they have to be built of batches with a 
size of 100 tons each.I4 
Production in a chemicalplant 11 
Here, a continuous process in a chemical plant that operates 365 days per year 
and 24 hours per day is to be planned for. The process is interrupted only for 
maintenance purposes a few days each year. In this process the minimization of 
changeovers is of paramount importance, because the plant produces off-grade 
products for a few days after each changeover between two products. There- 
fore, a minimum length is imposed on each production run. On the other hand, 

l 1  Cf. Gopalakrishnan et al. (1995) p. 1974. 
l2 Cf. Raflatac (2003). 
l3 Cf. Porkka (2000) pp. 7, 5 1-57, 
l 4  Cf. Kallrath and Wilson (1997) pp. 303-325 and Kallrath (1999) p. 335 
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storage space is limited and costly to increase. Furthermore, the process re- 
quires that the plant is always run at a minimum utilization rate.15 
Campaign planning 
A software company providing supply chain planning software wanted to en- 
hance the modeling and solution capabilities of its mid-term production plan- 
ning module. In this case it is crucial not only to solve a special case, but to 
come up with an universal model/algorithm that fits into the architecture of the 
software system in place. Characteristics within the scope of this project have 
been an exact modeling of setup operations within a bucket-oriented time struc- 
ture, specification of minimal campaign lengths and planning of campaigns 
consisting of batches with fixed size. 

1.4 Outline of Thesis 

This thesis is organized as follows. In the second chapter basic models in lot- 
sizing are introduced. According to their underlying time structure they are classi- 
fied into big-bucket, small-bucket and hybrid models. After having studied the dif- 
ferences of these models in detail, the third chapter analyzes their representation 
defects with respect to a continuous time scale. Thus, the effect discretization of 
time imposes on plans, that can be generated by those basic lot-sizing models, is 
evaluated. This analysis is based on four cornerstones, which are the representa- 
tion of setup states, the representation of lot sizes, the representation of setup op- 
erations and different assumptions on resource utilization. 

The fourth chapter provides a thorough literature review which is divided into 
two parts. The first part reviews basic models in lot-sizing introduced in the sec- 
ond chapter with special emphasis on the extensions to model time continuity as 
defined in chapter three. The second part contains a review of model formulations 
originating from applications in the process industries. These often incorporate 
some aspects of time continuity. As some of these model formulations are based 
on a continuous time scale, this second part of the literature review is hrther di- 
vided into model formulations based on a discrete representation of time and those 
based on a continuous representation of time. 

The planning framework and techniques considered capable of solving the later 
proposed model formulations are presented in chapter five. As solution techniques 
mathematical programming and decomposition will be introduced. 

The sixth chapter contains the heart of this thesis. Here, the modeling and solu- 
tion approach is presented. Mathematical programming model formulations are 
provided for the four aforementioned aspects to model time continuity in a time- 
indexed setting (setup states, lot sizes, setup operations and resource utilization). 
These extensions are given for two different basic models. Furthermore, they are 
provided as building blocks and may be freely combined dependent on the actual 

l5  Cf. Lee and Chen (2002) pp. 16-17. 
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decision situation. Finally, a decomposition heuristic is proposed to allow also for 
the solution of problems of bigger size. 

Computational results are provided in the seventh chapter. These are again or- 
ganized based on the four aspects to model time continuity in a time-indexed set- 
ting (setup states, lot sizes, setup operations and resource utilization). Solutions 
are analyzed to give insights into what makes certain decision situations difficult. 
Moreover, computational performance of the proposed model formulations is as- 
sessed by comparing them to other model formulations from literature. The exten- 
sibility of the proposed model formulations is shown as well as their independence 
from solver technology. 

Finally, chapter eight summarizes the achievements of this thesis and gives a 
brief outlook on hrther research opportunities. 



2 Basic Models in Lot-Sizing 

2.1 Classification of Lot-Sizing Models 

Obtaining cost-efficient production plans balancing the trade-off between setup 
and inventory holding costs - lot-sizing - has been a fundamental goal of practi- 
tioners since the beginning of industrialization. The first published work in this 
area by Harris titled "How many parts to make at once?" dates back as far as to 
1913.16 Since then, a broad stream of research has been developed, dealing with 
various types of lot-sizing problems for many different applications. 

These can be classified according to different attributes.17 For ease of presenta- 
tion these attributes are clustered into three sets according to their main relation- 
ship: time, resource and product. 

The first set "time" contains all attributes with relations to the time structure of 
the model and the data used: 

Planning horizon: The planning horizon may be finite or infinite. Models with 
an infinite planning horizon usually assume a constant demand rate like the 
Harris' economic order quantity (E0Q)-modell8 and will not be considered in 
the remainder. 

0 Time scale: The time scale may either be continuous or discrete. If a discrete 
time scale is chosen, time buckets may be either big or small and either uniform 
or non-uniform. Most standard lot-sizing models assume a uniform time discre- 
tization, which means that all time buckets have the same size (see sections 2.2 
and 2.3). Nevertheless, sometimes a telescopic time scale is chosen with larger 
time buckets towards the end of the planning horizon19 or time buckets may be 
non-uniform for other reasonsz0. The distinction into small- and big-bucket 
models concerns the relative length of the time periods with respect to the ex- 

l 6  Harris (1913). 
l 7  Other compilations of attributes and classifications of lot-sizing models and literature 

can be found in e.g., Derstroff (1995) pp. 20-24, Domschke et al. (1997) pp. 69-75, 
Haase (1994) pp. 3-7, Karimi et al. (2003) pp. 366-367, Kuik et al. (1994) pp. 247-249, 
Meyr (1999) pp. 46-55, Salomon (1991) pp. 21-22, Stadtler (2001) pp. 39-40 and Wol- 
sey (2002) pp. 1589, 1591, 1595. 

l8 Cf. Harris (1 913). 
l 9  E.g., Timpe and Kallrath (2000) pp. 424-425. 
20 E.g., Karimi and McDonald (1997) p. 2702. 
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pected length of any individual production lot.21 In models with small time 
buckets it is usually assumed that in each period only one or at most two prod- 
ucts may be produced. Therefore small-bucket models integrate lot-sizing and 
scheduling by not only determining the lot sizes, but also the sequence of pro- 
duction orders. On the other hand, big-bucket models permit multiple products 
to be produced each period without making any assertion about the sequence of 
orders. 
Temporal development of parameteddata: Parameters can either vary over 
time (dynamic) or not (static). Often models are distinguished into dynamic or 
static lot-sizing models according to the temporal development of demands,22 
but generally all parameters (e.g., production capacity, cost parameters, produc- 
tion coefficients) may vary over time. 
Availability and knowledge ofparameterddata: With respect to the availability 
and knowledge of the problem data deterministic and stochastic models have to 
be distinguished. In deterministic models all parameters and data are assumed 
to be known prior to planning. Stochastic models on the other side try to incor- 
porate the uncertainty of the future into the planning model. This is usually 
done by assuming a certain distribution or range of values instead of a distinct 
value for a certain parameter. Typical parameters which are modeled stochasti- 
cally are e.g. external demands or quantities of defective items.23 Only determi- 
nistic problems will be discussed in the remainder. 
Objectivefunction: Most commonly the objective of a lot-sizing problem is to 
minimize the sum of several cost components. Nevertheless, sometimes other 
objective functions are defined.24 These can be either monetary like the maxi- 
mization of profits or sales, or non-monetary. Then, the goal is not transformed 
into monetary units, because it is a rather physical accomplishment (e.g., re- 
source leveling) or a temporal objective (e.g., minimization of maximum late- 
ness or total completion time)25. 
Cost components: As stated above the standard objective function is the mini- 
mization of several cost components. These comprise classically inventory 
holding costs and setup costs. 

Inventory holding costs are typically taken into consideration as a linear cost 
function of the quantity of products in stock at certain points in time. Economi- 
cally they mainly consist of the costs of capital tied up in inventory. Other parts 
included in inventory holding costs are costs associated with warehouse opera- 
tions, taxes, insurance premiums, obsolescence and shrinkage.26 

21 Cf. Salomon (1991) p. 21. Buckets in small-bucket models can have a considerable 
length depending on the industry and level of aggregation. E.g., De Matta and Guig- 
nard (1994) discuss an example of a small-bucket model with a bucket length of one 
week. 

22 Cf. Domschke et al. (1997) p. 70, Kuik et al. (1994) p. 247 and Salomon (1991) p. 21. 
23 Cf. Haase (1 994) p. 3. 
24 Cf. Domschke et al. (1997) p. 73 and Kallrath (2002b) p. 224. 
25 Cf. Potts and van Wassenhove (1992) p. 398. 
26 Cf. Derstroff (19%) p. 23 and Haase (1994) p. 5. 
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Setup costs are costs incurred by the production process. Whenever a lot of 
any product is produced, resources involved in the production process have to 
be set up to cope with that specific product, e.g., re-tooling of a machine. These 
costs are charged to the objective function as setup costs. Setup costs consist of 
direct costs (e.g., cleaning materials) and opportunity costs. Opportunity costs 
are charged, if setup times, that are the times associated with setup operations, 
are not considered in the model explicitly. Then, one has to figure out how 
much capacity has been lost due to the setup operation in order to determine the 
value of this lost capacity (e.g., contribution margin of those products that 
could have been produced during the setup operation). Of course, these oppor- 
tunity costs are hard to estimate as they depend strongly on the scarcity of 
available capacity which may vary over time and which often is known only af- 
ter lot-sizing has been done. Therefore, many authors recommend to include 
setup times into the model and to charge only direct setup costs in the objective 
function.27 

Besides these classical cost components of lot-sizing problems other cost 
components might be considered in the objective function. 

First, there are more types of setup related costs. Reservation costs might be 
charged, if there is a cost associated with preserving the current setup state, 
when there is no production. Switch-off costs might replace setup costs, if the 
costs associated with a specific production lot are related primarily to the end of 
the production process and not to the start (e.g., the main cost component re- 
sults from cleaning). Generally, it suffices to include either setup or switch-off 
costs as long as the costs are assumed constant over time and no net present 
value calculation is performed in the objective function. Furthermore, Wolsey 
(2002) distinguishes between start-up costs and setup costs, where start-up 
costs are the costs associated with the start of a production lot and setup costs 
are charged in each period of production (including the start-up period).28 

Second, there are also more inventory related costs. These deal with the 
case, that there is not enough inventory to meet demand. In this case the de- 
mand is either lost (lost sales) or fulfilled in later periods (backlog). Both cases 
are not desirable and therefore a penalty cost is usually associated with these 
types of "negative" inventories. 

Moreover, production costs are most often assumed constant over time and 
therefore irrelevant in this decision situation. Nonetheless, it might be eco- 
nomically correct to assume declining production costs.29 

Finally, overtime costs for using extra capacity might be considered in the 
objective function. 

The second set of attributes concerns mainly the "resources" involved in the pro- 
duction planning problem. 

27 Cf. Kuik et al. (1994) pp. 249-250 for more criticism to this approach. 
28 Cf. Wolsey (2002) p. 1597. 
29 Cf. Domschke et al. (1997) p. 72. 
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Capacities: Capacities of resources can be assumed finite (capacitated) or infi- 
nite (uncapacitated). If assumed finite, they might be extended by overtime at a 
certain cost. Again, this extension can be finite or infinite. Usually capacities 
may be used up to a fixed budget in each period, e.g., according to a working 
calendar. On the other hand, very rarely, resources are assumed to be not re- 
newable or only partially renewable. This means the resource availability in a 
certain period depends on the use of that specific resource in former periods.30 
Product-resource-assignments: Product-resource-assignments3' are either such, 
that each product is assigned to only a single resource (unique assignment) or 
not. 
Number of resources: The planning problem may comprise of one or more re- 
sources. If a specific operation can be performed on more than one resource, 
these resources are called parallel resources. They can be either identical (with 
respect to the production coefficients, capacities and sets of possible product- 
resource-assignments) or not. On the other hand, if a single operation requires 
two or more resources in parallel (e.g., a machine and a worker), we will talk of 
a problem with multiple resources. 
Product/operation structure: The product/operation structure32 which shows the 
flow of materials through the production system may be either cyclic or non- 
cyclic. The productloperation structure is deemed cyclic, if at least one end- 
product requires two operations at the same resource. 
Minimal utilization rates: Minimal production 1 utilization rates are sometimes 
taken into ac~ount.~'  They are necessary to avoid production plans in which re- 
sources are utilized only to a negligible extent. In that case it might be more 
economical to turn this resource off and shift production to another resource or 
period. 
Production coeficient: Production coefficients are usually deemed constant. 
That means a production function of Leontief type34 or linear technology is as- 
sumed as a basis. Changes in intensity as considered in the Gutenberg produc- 
tion function35 are regularly not taken into account, but sometimes the assump- 

30 Cf. Kimms (1997) pp. 66-68 for an example with partially renewable resources. 
31 In this context of planning it is generally not sufficient to examine products at this 

level of detail. Instead operations should be focused on here, because an operation uses 
part of the available resource capacity, while a product is usually treated by several 
operations on (possibly) different resources (e.g., Tempelmeier (2003) p. 207). Never- 
theless, we will keep this distinction in mind, but continue to use the terms "product" 
and "item" as synonyms as done in most of the lot-sizing literature. 

32 Cf. Tempelmeier and Helber (1994) pp. 297-298 and Tempelmeier and Derstroff 
(1996) p. 739. 

33 E.g., Kallrath and Wilson (1997) p. 315, Lee and Chen (2002) pp. 21-22 and Wolsey 
(2002) p. 1597. 

34 Cf. Domschke and Scholl(2000) p. 89. 
35 Cf. Domschke and Scholl (2000) pp. 92-95, Thommen (1991) pp. 404-407 and Wohe 

(1990) pp. 587-594. 


