

IMO INTERNATIONAL MATHEMATICS OLYMPIAD

Prasoon Kumar

$\mathcal{V}_{\&} S$ Putusillio

F-2/16, Ansari road, Daryaganj, New Delhi-110002
 匹 23240026, 23240027• Fax: 011-23240028
 Email: info@vspublishers.com •Website: www.vspublishers.com

Regional Office : Hyderabad

5-1-707/1, Brij Bhawan (Beside Central Bank of India Lane)
Bank Street, Koti, Hyderabad - 500095
उ 040-24737290
E-mail: vspublishershyd@gmail.com

Branch Office : Mumbai

Jaywant Industrial Estate, 1st Floor-108, Tardeo Road
Opposite Sobo Central Mall, Mumbai - 400034
© 022-23510736
E-mail: vspublishersmum@gmail.com

Follow us on: 3 in

© Copyright: $\mathcal{V}_{\&} S_{\text {Mundill }}$
 ISBN 978-93-505795-7-2

DISCLAIMER

While every attempt has been made to provide accurate and timely information in this book, neither the author nor the publisher assumes any responsibility for errors, unintended omissions or commissions detected therein. The author and publisher makes no representation or warranty with respect to the comprehensiveness or completeness of the contents provided.
All matters included have been simplified under professional guidance for general information only, without any warranty for applicability on an individual. Any mention of an organization or a website in the book, by way of citation or as a source of additional information, doesn't imply the endorsement of the content either by the author or the publisher. It is possible that websites cited may have changed or removed between the time of editing and publishing the book.
Results from using the expert opinion in this book will be totally dependent on individual circumstances and factors beyond the control of the author and the publisher.
It makes sense to elicit advice from well informed sources before implementing the ideas given in the book. The reader assumes full responsibility for the consequences arising out from reading this book.
For proper guidance, it is advisable to read the book under the watchful eyes of parents/guardian. The buyer of this book assumes all responsibility for the use of given materials and information.
The copyright of the entire content of this book rests with the author/publisher. Any infringement/transmission of the cover design, text or illustrations, in any form, by any means, by any entity will invite legal action and be responsible for consequences thereon.

Publisher's Note

V\&S Publishers, after the grand success of a number of academic and general books, is pleased to bring out a series of Mathematics Olympiad books under The Gen X series generating Xcellence in generation X - which has been designed to focus on the problems faced by students. In all books the concepts have been explained clearly through various examples, illustrations and diagrams wherever required. Each book has been developed to meet specific needs of students who aspire to get distinctions in the field of mathematics and want to become Olympiad champs at national and international levels.
To go through Maths Olympiad successfully, students need to do thorough study of topics covered in the Olympiads syllabus and the topics covered in school syllabus as well. The Olympiads not only tests the subjective knowledge but Reasoning skills also. So students are required to comprehend the depth of concepts and problems and gain experience through practice. The Olympiads check efficiency of candidates in problem solving. These exams are conducted in different stages at regional, national, and international levels. At each stage of the test, the candidate should be fully prepared to go through the exam. Therefore, this exam requires careful attention towards comprehension of concepts, thorough practice, and application of rules and concepts.
While other books in market focus selectively on questions or theory; V \& S Maths Olympiad books are rather comprehensive. Each book has been divided into five sections namely Mathematics, Logical Reasoning, Achiever's section, Subjective section, and Model Papers. The theory has been explained through solved examples. To enhance problem solving skills of candidates, Multiple Choice Questions (MCQs) with detailed solutions are given at the end of each chapter. Two Mock Test Papers have been included to understand the pattern of exam. A CD containing Study Chart for systematic preparation, Tips \& Tricks to crack Maths Olympiad, Pattern of exam, and links of Previous Years Papers is accompanied with this book. The books are also useful for various competitive exams such as NTSE, NSTSE, and SLSTSE as well.
We wish you all success in the examination and a very bright future in the field of mathematics.
All the best
SECTION 1 : MATHEMATICAL REASONING

1. Playing with Numbers 9
2. Number System 19
3. Integers 25
4. Fractions 31
5. Decimals 40
6. Simplification 47
7. Problems on Ages 52
8. Ratio and Proportion 57
9. Algebra 63
10. Mensuration 70
11. Geometry 76
SECTION 2 : LOGICAL REASONING
Part A : Verbal Reasoning
12. Pattern 85
13. Analogy 92
14. Series Completion 105
15. Odd One Out 111
16. Coding Decoding 116
17. Alphabet Test 123
18. Number and Ranking Test 130
19. Direction Sense Test 135
20. Essential Element 142
Part B : Non-Verbal Reasoning
21. Mirror Image 148
22. Embedded Figure 154
23. Figure Puzzles 160

SECTION 3 : ACHIEVER'S SECTION

High Order Thinking Skills (HOTS) 169
SECTION 4 : SUBJECTIVE SECTION
Short Answer Questions 177
SECTION 5 : MODEL PAPERS
Model Test Paper - 1 181

Section 1
 Mathematical REASONING

Playing with Numbers

Numbers

We usually write numbers using the Hindu-Arabic system which uses the ten digits $0,1,2,3,4,5,6,7$, 8 and 9.

Types of Numbers

1. Even numbers: All multiples of 2 are called even numbers, e.g., $2,4,6,8,10, \ldots$.. are all even numbers.
2. Odd numbers: Numbers which are not multiples of 2 are called odd numbers, e.g., 1, 3, 5, 7, 9 are all odd numbers.
3. Perfect numbers: If the sum of all the factors of a number is two times the number then the number is called a perfect number, e.g. The factors of 6 are $1,2,3$, and 6 .
4. Co-prime numbers: Two numbers having only ' 1 ' as a common factor are called co-prime numbers, e.g., 5 and 8 are co-prime numbers.

Divisibility Tests of Numbers

1. Divisibility by 2: A number is divisible by 2 if its ones digit is $0,2,4,6$, or 8 , e.g., 62,60 , 198, 294 \qquad etc.
2. Divisibility by 3: A number is divisible by 3 if the sum of its digit is divisible by 3.
3. Divisibility by 4: A number is divisible by 4 if the number formed by the last two digits (i.e. ones and tens) of the number is divisible by 4.
4. Divisibility by 5: A number is divisible by 5 if the digits in ones places is a 0 or 5 .
5. Divisibility by 7: A number is divisible by 7 if we follow certain steps to determine this: $623 \rightarrow 3 \times 2=6$ (Double the digit in one's place).
$62-6=56$ (Subtract the number formed by rest of the digits).
$\because 56$ is divisible by 7 .
$\therefore 623$ is divisible by 7 .
6. Divisibility by 9: A number is divisible by 9 if the sum of its digits is divisible by 9 .

Example 1: 1123056 is divisible by
(i) 3
(ii) 5
(iii) 7
(iv) 11

Solution:

(i) Sum of digits $=1+1+2+3+0+5+6=18$.
$\because 18$ is divisible by 3 .
$\therefore 1123056$ is divisible by 3 .
(ii) \because The ones place digit is 6
\therefore The given number is not divisible by 5 .
(iii) $112305-6 \times 2=112305-12=112293$
$\because 112293$ is not divisible by 7 .
$\therefore 1123056$ is not divisible by 7 .
(iv)

\because Difference $=(9-9)=0$
\therefore This number is divisible by 11 .
Example 2: Check the divisibility of 2345 by 7 .
Solution: $\quad 234-5 \times 2=224$.
$\because 224$ is divisible by 7 .
$\therefore 2345$ is divisible by 7 .
Example 3: Check the divisibility of 9198 by 3 and 9.
Solution: $\quad 9+1+9+8=27$.
\therefore the number is divisible by 3 as well as 9 .
Example 4: Replace * by the smallest digit, so that it is divisible by 11.
$64 * 719$.
Solution:

$20-7-*=11 \lambda$, where, λ is an integer.
For, $\lambda=1$,

* $=2$.

Multiples and Factors

Multiple

A number which can be expressed as a product of two or more numbers is called the multiple of those numbers. For example 42 is a multiple of 6 as well as 7 .

Factor

A factor is the number which divides the given number completely by leaving remainder ' 0 '. For example 28 is divisible by $1,2,4,7$ and 28 . So these are factors of 28.

Highest Common Factor

The largest common factor of two or more numbers is their Highest Common Factor (HCF). It is also known as Greatest Common Divisor (GCD).
The possible factors of 42 are $1,2,3,6,7,14,42$.
The possible factors of 56 are $1,2,4,7,8,14,28,56$.
\therefore The highest common factor of 42 and $56=14$.
There are two methods to find H.C.F. of given numbers:

1. Prime Factorisation Method,
2. Division Method.

Example 5: Find the H.C.F. of 270 and 729 by prime factorization method.
Solution:

2	270
3	135
3	45
3	15
	5

3	729
3	243
3	81
3	27
3	9
	3

$$
270=2 \times 3 \times 3 \times 3 \times 5 \text { and }
$$

$729=3 \times 3 \times 3 \times 3 \times 3 \times 3$
\therefore H.C.F. of 270 and $729=3 \times 3 \times 3=27$.
Example 6: Find the HCF of 120 and 96 by division method.
Solution:

$$
\begin{aligned}
& 9 6 \longdiv { 1 2 0 } 1 \\
& \begin{array}{c}
96 \\
\hline 2 4 \longdiv { 9 6 } (4 \\
\frac{96}{x \times}
\end{array}
\end{aligned}
$$

\therefore HCF of 120 and $96=24$.

HCF of Three or More Numbers

Example 7: Find the greatest number which divides 13, 133, 37 leaving 1 as a remainder.
Solution:

$$
\begin{array}{rrr}
13 & 133 & 37 \\
-1 & \underline{-1} & \underline{-1} \\
\hline \underline{12} & \underline{132} & \underline{36} \\
\hline
\end{array}
$$

Hence, the required number is H.C.F. of 12, 132 and 36.
\therefore HCF of 12 and 132
$1 2 \longdiv { 1 3 2 (1 1 }$

$$
\begin{aligned}
& \frac{12}{12} \\
& \frac{12}{\times \times} \\
& \hline
\end{aligned}
$$

HCF of 12 and $132=12$.
Similarly, HCF of 12 and $36=12$.
\therefore HCF of 12, 132, and $36=12$.
\therefore Required number $=12$.

Lowest Common Multiple (LCM)

The lowest common multiple of two or more numbers is the smallest number which is multiple of each of the given numbers.
There are two methods to find LCM of given numbers.
(i) Prime factorisation method
(ii) Division method

Example 8: Find the LCM of 4, 16, 20, 24 and 36.
Solution:

2	4,	16,	20,
2	24,	8,	10,

\therefore LCM of $4,16,20,24$ and $36=2 \times 2 \times 2 \times 3 \times 2 \times 5 \times 3=1440$.
Example 9: Four bells toll at intervals 5, 10, 15 and 25 seconds. The bells toll together of 6 O’clock. When will they toll together again?
Solution: \quad Time when the bells will toll together $=\operatorname{LCM}$ of 5, 10, 15 and 25 .

5	$5,10,15,25$
	$1,2, \quad 3, \quad 5$

LCM of $5,10,15$ and $25=5 \times 2 \times 3 \times 5$
$=150$ seconds.
$\therefore 150$ seconds $=2.5$ min.
\therefore Bells will again toll 2.5 minutes past 6 o’clock.

Relation between HCF and LCM of Two Numbers

For any two numbers ' x ' and ' y ',
Product of x and $y=$ HCF of x and $y \times$ LCM of x and y.
Example 10: The HCF of two numbers is 4 and their product is 288 . Find the LCM of two numbers.
Solution: $\quad \mathrm{LCM} \times \mathrm{HCF}=$ Product of numbers.

$$
\begin{aligned}
\therefore \mathrm{LCM}= & \frac{\text { product of numbers }}{\mathrm{HCF}} \\
& =\frac{288}{4} \\
& =72
\end{aligned}
$$

Multiple Choice Questions

1. The HCF of two numbers is 16 and their product is 3072 . What is the LCM?
(a) 182
(b) 162
(c) 192
(d) 196
2. Which of the following numbers is divisible by 3 ?
(a) 24357806
(b) 33336433
(c) 35769812
(d) 83479560
3. Which of the following is a prime number?
(a) 117
(b) 171
(c) 179
(d) 169
4. Which of the following is not a twin prime?
(a) $(11,13)$
(b) $(17,19)$
(c) $(23,29)$
(d) $(41,43)$
5. Find the greatest number which divides 126 , 150 and 210 leaving remainder 6 in each case.
(a) 12
(b) 14
(c) 16
(d) 22
6. Find the largest number that will divide 76, 113 and 186 leaving remainder 4, 5, 6 respectively.
(a) 24
(b) 12
(c) 36
(d) 54
7. Find the smallest number which when divided by $16,36 \& 40$ leaves a remainder 7 in each case.
(a) 627
(b) 727
(c) 827
(d) 927
8. Which greatest number of 4 digits is exactly divisible by 12, 16, 28 \& 36?
(a) 6072
(b) 8072
(c) 8972
(d) 9072
9. The HCF of two numbers is 23 and their LCM is 1449 . If one of the numbers is 161 what is the other?
(a) 107
(b) 117
(c) 167
(d) 207
10. Find the smallest number which when diming by 3 is divisible by $21,28,36$ and 45 ?
(a) 1163
(b) 1263
(c) 1283
(d) 1293
11. The HCF of two numbers is 145 and their LCM is 2175 . If one of the numbers is 725 . What is the other number?
(a) 5
(b) 290
(c) 115
(d) 435
12. Which of the following is a composite number?
(a) 23
(b) 29
(c) 32
(d) 41
13. Which longest tape can be used to measure exactly the length $7 \mathrm{~m}, 3 \mathrm{~m} 85 \mathrm{~cm}$ and 12 m 95 cm ?
(a) 45 cm
(b) 35 cm
(c) 105 cm
(d) 70 cm
14. The greatest number that will divide 445,572 \& 699 leaving remainder $4,5,6$ respectively.
(a) 84
(b) 42
(c) 49
(d) 63
15. What is the sum of LCM \& HCF of 1152 \& 1664?
(a) 14976
(b) 15104
(c) 15114
(d) 15204
16. The HCF of two numbers is 21 and their LCM is 3003 . If one of the numbers is 231 . Then what is the other number?
(a) 273
(b) 263
(c) 283
(d) 293
17. Find the greatest 3-digit number which is divisible by 8,10 and 12 .
(a) 840
(b) 480
(c) 960
(d) 980
18. Which of the following number is not divisible by 9 ?
(a) 387459
(b) 904806
(c) 758934
(d) 879134
19. Find the smallest possible number which on adding 19 becomes exactly divisible by 28 , 36 and 45.
(a) 1239
(b) 1241
(c) 1243
(d) 1245
20. Four bells toll at intervals $4,7,12 \& 84$ seconds. The bells toll together at 7 o'clock. How many times will they again toll together in 28 minutes?
(a) 15
(b) 20
(c) 25
(d) 30
21. What is the least 5 -digit number which is exactly divisible by $20,25,30$?
(a) 10100
(b) 10200
(c) 10300
(d) 10400
22. What is the maximum even multiple of 25 between $500 \& 700$?
(a) 660
(b) 600
(c) 675
(d) 650
23. Which of the following number is divisible by 8 ?
(a) 162537
(b) 764918
(c) 825908
(d) 694728
24. Which of the following is divisible by 11 ?
(a) 65483
(b) 72493
(c) 84527
(d) 92056
25. What is sum of first five multiples of 23 ?
(a) 341
(b) 342
(c) 343
(d) 345
26. Which of the following statement is true?
(a) 1509344 is divisible by 8 .
(b) 72493 is divisible by 11 .
(c) 8569 is not divisible by 11 .
(d) 115 is a multiple of 19 .
27. In 467 * 381 replace * by which smallest digit to make it divisible by 3 ?
(a) 1
(b) 2
(c) 3
(d) 4
28. 1870 is divisible by 22 . Which two numbers nearest to 1870 are each divisible by 22 ?
(a) 1848,1892
(b) 1893, 1914
(c) 1826,1914
(d) None of these
29. There are three heaps of rice weighing 120 $\mathrm{kg}, 144 \mathrm{~kg}$ and 204 kg . What is the maximum capacity of a bag so that the rice of each can be packed in exactly number of bags?
(a) 24 kg
(b) 18 kg
(c) 12 kg
(d) 6 kg
30. Four bells ring at intervals of $6,8,12 \& 20$ minutes. They ring simultaneously at 7 a.m. At what time will they ring together?
(a) 8 a.m.
(b) 9 a.m.
(c) $10 \mathrm{a} . \mathrm{m}$.
(d) 9:30 a.m.

Answer Key

1. (c)	2. (d)	3. (c)	4. (c)	5. (a)	6. (c)	7. (b)	8. (d)	9. (d)	10 (b)
11. (d)	12. (c)	13. (b)	14. (d)	15. (b)	16. (a)	17. (c)	18. (d)	19. (b)	20. (b)
21. (a)	22.(d)	23. (d)	24. (a)	25. (d)	26. (a)	27. (a)	28. (a)	29. (c)	30. (b)

1. (c) $\mathrm{HCF} \times \mathrm{LCM}=$ product of numbers.

$$
\begin{aligned}
\Rightarrow \mathrm{LCM} & =\frac{\text { Product of numbers }}{\text { HCF }} \\
& =\frac{3072}{16}=192
\end{aligned}
$$

2. (d)
$2+4+3+5+7+8+0+6=35$
$3+3+3+3+6+4+3+3=28$
$3+5+7+6+9+8+1+2=41$
$8+3+4+7+9+5+6+0=42$
Since 42 is divisible by 3 then (d) is divisible by 3 .
3. (c)

117, 171 are divisible by 3 .
169 is divisible by 13.
179 is a prime number.
4. (c)
$(23,29)$ is not a twin prime.
5. (a)

$$
\begin{array}{rrr}
126 & 150 & 210 \\
-6 & \frac{-6}{14} & \frac{-6}{204} \\
\hline 120 & \underline{144} & \\
\hline
\end{array}
$$

HCF of 120 and $144=12$
HCF of 120 and $204=12$
Required number $=$ HCF of 120, 144, 204

$$
=12
$$

6. (c)

HCF of 72 and $108=36$
HCF of 108 and $180=36$
\therefore required number $=36$
7. (b)

LCM of 16,36 and 40 is

2	16,	36,40
2	8,	18,20
2	4,	9,10
	2,	9,

$\therefore \mathrm{LCM}=2 \times 2 \times 2 \times 2 \times 9 \times 5$

$$
=16 \times 45=720
$$

\therefore required number $=(720+7)=727$
8. (d)

The greatest 4 digit number $=9999$.
Here,

2	12,	16,	28,
2	6,	3,	14,
2	3,	4,	7,
	3,	2,	7,

LCM of 12, 16, 28 and 36

$$
\begin{aligned}
& =2 \times 2 \times 2 \times 3 \times 2 \times 7 \times 3 \\
& =4 \times 9 \times 4 \times 7 \\
& =16 \times 9 \times 7 \\
& =1008
\end{aligned}
$$

$\because 9072$ is a multiple of 1008 .
\therefore it is the greatest number of 4 digits which is divisible by 12, 16, 28 \& 36.
9. (d)
$\mathrm{LCM} \times \mathrm{HCF}=$ one number \times second number
\Rightarrow Second number $=\frac{23 \times 1449}{161}$
$=23 \times 9$
$=207$
10. (b)

LCM of $21,28,36$ and 45 is

3	21,	28,	36,
2	7,	28,	12,

\therefore LCM of $21,28,36$ and 45

$$
\begin{aligned}
& =3 \times 2 \times 3 \times 2 \times 7 \times 5 \\
& =36 \times 35 \\
& =1260
\end{aligned}
$$

\therefore Required number $=1260+3=1263$
11. (d)

Required number $=\frac{\text { HCF LCM }}{\text { one of the numbers }}$

$$
\begin{aligned}
& =\frac{145 \times 2175}{725} \\
& =435
\end{aligned}
$$

12. (c)
$\because 32$ has $1,2,4,8,16,32$, as its factors.
$\therefore 32$ is a composite number.
13. (b)

Required length $=$ HCF of 700, 385 and 1295

$$
=35 \mathrm{~cm}
$$

14. (d)

3	693
3	231
7	77
	11

HCF of 441, 567 and $693=3 \times 3 \times 7$

$$
=63
$$

\therefore Required number $=63$
15. (b)

HCF of 1152 and 1664

2	1152
2	576
2	288
2	144
2	72
2	36
2	18
3	9
	3

2	1664
2	832
2	416
2	208
2	104
2	52
2	26
	13

\therefore HCF of 1152 and $1664=2^{7}=128$
and LCM of 1152 and $1664=14976$

2	1152,	1664
2	526,	832
	263,	416

$\therefore \mathrm{LCM}+\mathrm{HCF}=14976+128=15104$.
16. (a)

Required number $=\frac{21 \times 3003}{231}$

$$
=273
$$

17. (c)

LCM of 8, 10 and 12

2	8,	10	12
2	4,	5,	6
	2,	5,	3

\therefore LCM of $8,10,12=2 \times 2 \times 2 \times 5 \times 3$

$$
=120
$$

\therefore Greatest 3-digit number which is divisible by 8,10 and $12=120 \times 8=960$
18. (d)
$3+8+7+4+5+9=36$
$9+0+4+8+0+6=27$
$7+5+8+9+3+4=36$
$8+7+9+1+3+4=32$
$\because 32$ is not divisible by 9 .
$\therefore 879134$ is not divisible by 9 .
19. (b)

LCM of 28, 36 and 45

2	$28,36,45$
2	$14,18,45$
3	7,
3	7,
	7,
	1,

\therefore LCM of 28,36 and 45

$$
\begin{aligned}
& =2 \times 2 \times 3 \times 3 \times 7 \times 5 \\
& =4 \times 9 \times 35 \\
& =140 \times 9 \\
& =1260
\end{aligned}
$$

\therefore Required number $=1260-19$

$$
=1241
$$

20. (b)

LCM of 4, 7, 12 and $84=$| 2 | $4,7,12,84$ |
| :--- | :--- |
| 2 | $2,7,6,42$ |
| 3 | $1,7,3,21$ |
| 7 | $1,7,1,7$ |
| | $1,1,1,1$ |

$$
=2 \times 2 \times 3 \times 7=84 \text { seconds. }
$$

\therefore The bells will toll together after 84 seconds.
\therefore Number of times the bells will toll together in 28 minutes $=\frac{28 \times 60}{84}=20$
21. (a)

LCM of $20,25,30$ is

| 2 | $20,25,30$ |
| :---: | :---: | :---: |
| 5 | $10,25,15$ |
| | $2,5,3$ |

\therefore LCM of $20,25,30=2 \times 5 \times 2 \times 5 \times 3$

$$
=300
$$

\therefore least 5-digit number which is exactly divisible by $20,25,30=10100$.
22. (d)

Multiples of 25 between 500 and $700=525$, 550, 575, 600, 625, 650, 675.
\therefore Required number $=650$
23. (d)

694728 is divisible by 2 as well as 4 .
$\therefore 694728$ is divisible by 8 .
24. (a)

Difference $=13-13=0$
$\therefore 65483$ is divisible by 11 .
25. (d)

Sum of first five multiples of $23=23+23 \times$
$2+23 \times 3+23 \times 4+23 \times 5$
$=23(1+2+3+4+5)$
$=23 \times 15$
$=345$
26. (a)

1509344 is divisible by 8 .
27. (a)

467 * 381
The sum of digits of the above number

$$
\begin{aligned}
& =4+6+7+*+3+8+1 \\
& =10+7+*+3+8+1 \\
& =29+*
\end{aligned}
$$

If, $*=1$, then, the sum of digits will become 30.
\therefore required number $=1$
28. (a)
$1870+22=1892$
$1870-22=1848$
29. (c)

Required capacity of bag

$$
\begin{aligned}
& =\text { HCF of 120, } 144 \text { and } 204 \\
& =12 \mathrm{~kg}
\end{aligned}
$$

30. (b)

Required time $=\operatorname{LCM}$ of 6, 8, 12 and 20

2	6,	8,	12,
2	20		
3	3,	2,	3,
	1,	5	5

\therefore Required time $=2 \times 2 \times 3 \times 2 \times 5$

$$
=120 \text { minutes }=2 \mathrm{hr} \text {. }
$$

\therefore bells will again ring together at $(7+2)$

$$
=9 \mathrm{a} . \mathrm{m} .
$$

