

Naturschutz und Biologische Vielfalt

# Ethohydraulische Untersuchungen zur Verbesserung des Fischschutzes an Wasserkraftanlagen

Boris Lehmann, Beate Adam, Oliver Engler, Veronika Hecht und Katharina Schneider



151

# Naturschutz und Biologische Vielfalt Heft 151

# Ethohydraulische Untersuchungen zur Verbesserung des Fischschutzes an Wasserkraftanlagen

Ergebnisse des F+E-Vorhabens (FKZ 3513 85 0300) des Bundesamtes für Naturschutz

> Boris Lehmann Beate Adam Oliver Engler Veronika Hecht Katharina Schneider

Bundesamt für Naturschutz Bonn - Bad Godesberg 2016 **Titelfotos:** oben links: Aal beim Abstieg in einer Bypassöffnung (Institut für angewandte Ökologie); unten links: Strömungssignatur durch eine Bypassöffnung (TU Darmstadt); oben rechts: Versuchsanordnung Schrägrechen mit Bypass (TU Darmstadt); unten rechts: Lachssmolts vor einer Abwanderbarriere (Institut für angewandte Ökologie)

#### Adressen der Autorinnen und Autoren:

| Prof. DrIng. habil. Boris Lehmann | Technische Universität Darmstadt                      |
|-----------------------------------|-------------------------------------------------------|
| DiplIng. Veronika Hecht           | Institut für Wasserbau und Wasserwirtschaft           |
| M. Sc. Katharina Schneider        | Fachgebiet Wasserbau und Hydraulik                    |
|                                   | Franziska-Braun-Straße 7, 64287 Darmstadt             |
| Dr. Beate Adam                    | Institut für angewandte Ökologie (IfÖ)                |
| DiplGeogr. Oliver Engler          | Neustädter Weg 25, 36320 Kirtorf-Wahlen               |
| Fachbetreuung im BfN:             |                                                       |
| DiplIng. Stefan Hintersatz        | Fachgebiet II 3.2 "Binnengewässer, Auenökosysteme und |
| DiplBiol. Bernd Neukirchen        | Wasserhaushalt"                                       |

Die vorliegende Veröffentlichung fasst die Ergebnisse des F+E-Vorhabens "Untersuchungen zum Orientierungs- und Suchverhalten abwandernder Fische zur Verbesserung der Dimensionierung und Anordnung von Fischschutzeinrichtungen vor Wasserkraftanlagen" zusammen.

Diese Veröffentlichung wird aufgenommen in die Literaturdatenbank DNL-online (www.dnl-online.de).

Institutioneller Herausgeber :

Bundesamt für Naturschutz (BfN) Konstantinstr. 110, 53179 Bonn URL: www.bfn.de

Der institutionelle Herausgeber übernimmt keine Gewähr für die Richtigkeit, die Genauigkeit und Vollständigkeit der Angaben sowie für die Beachtung privater Rechte Dritter. Die in den Beiträgen geäußerten Ansichten und Meinungen müssen nicht mit denen des institutionellen Herausgebers übereinstimmen.

Das Werk einschließlich aller seiner Teile ist urheberrechtlich geschützt. Jede Verwertung außerhalb der engen Grenzen des Urheberrechtsgesetzes ist ohne Zustimmung des institutionellen Herausgebers unzulässig und strafbar.

Nachdruck, auch in Auszügen, nur mit Genehmigung des BfN

Druck: Griebsch & Rochol Druck GmbH & Co. KG, Hamm

| Bezug über: | BfN-Schriftenvertrieb – Leserservice –  | oder im Internet:       |
|-------------|-----------------------------------------|-------------------------|
| -           | im Landwirtschaftsverlag GmbH           | www.buchweltshop.de/bfn |
|             | 48084 Münster                           | -                       |
|             | Tel.: 02501/801-300, Fax: 02501/801-351 |                         |
|             |                                         |                         |

ISBN 978-3-7843-9171-7

DOI 10.19213/973151

Gedruckt auf "Cirkle Silk Premium White", hergestellt aus 100% Recyclingmaterial, FSC<sup>®</sup> zertifiziert und mit dem EU Ecolabel ausgezeichnet.

Bonn - Bad Godesberg 2016

# Inhaltsverzeichnis

| Abbil                         | dungsv                                                                   | erzeichnis                                                                                                                                                                                                                                                                                      | 5                                         |
|-------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| Tabel                         | llenverz                                                                 | eichnis                                                                                                                                                                                                                                                                                         | 11                                        |
| Vorw                          | ort                                                                      |                                                                                                                                                                                                                                                                                                 | 13                                        |
| <b>1</b><br>1.1<br>1.2<br>1.3 | Einleite<br>Veranla<br>Method<br>Aufbau                                  | Ing<br>Issung und Ziele des F+E-Vorhabens<br>ischer Ansatz und Vorgehensweise<br>des Berichts                                                                                                                                                                                                   | <b> 15</b><br>15<br>18<br>20              |
| 2                             | Stand d                                                                  | les Wissens über Bypässe                                                                                                                                                                                                                                                                        | 22                                        |
| <b>3</b><br>3.1               | Ethohy<br>Rechtlie<br>Untersu                                            | draulischer Untersuchungsansatz<br>che Voraussetzungen für die Durchführung ethohydraulischer<br>chungen                                                                                                                                                                                        | <b>31</b><br>31                           |
| 3.2                           | Ethohyd<br>3.2.1<br>3.2.2<br>3.2.3<br>3.2.4                              | draulischer Versuchsstand im Wasserbaulabor der TU Darmstadt<br>Laborrinne<br>Steuer- und Regeltechnik<br>Messtechnik<br>Beobachtungstechnik                                                                                                                                                    | 32<br>32<br>35<br>35<br>37                |
| 3.3                           | Modula<br>3.3.1<br>3.3.2<br>3.3.3<br>3.3.4                               | re Einbauten und Setups in der Laborrinne<br>Öffnungskonturen<br>Öffnungskubaturen<br>Position der Öffnungen<br>Recheneinbauten                                                                                                                                                                 | 38<br>42<br>43<br>43<br>46                |
| 3.4<br>3.5<br>3.6             | Hälteru<br>Behand<br>Beschat                                             | ng der Fische<br>lung der Fische während der ethohydraulischen Tests<br>ffung der Fische                                                                                                                                                                                                        | 46<br>48<br>49                            |
| <b>4</b><br>4.1<br>4.2<br>4.3 | <b>Aufbau</b><br>Vorbere<br>Einsetze<br>Dokum<br>4.3.1<br>4.3.2<br>4.3.3 | a und Ablauf eines ethohydraulischen Tests<br>eiten des Setups<br>en und Eingewöhnen der Fische<br>entation eines ethohydraulischen Tests<br>Hydrometrische Messungen und numerische Strömungssimulatione<br>Erstellen ethohydraulischer Signaturen<br>Transdisziplinäres Ableiten von Befunden | 53<br>53<br>53<br>54<br>en 54<br>57<br>62 |
| <b>5</b><br>5.1<br>5.2        | Freilan<br>Bypäss<br>Potentie<br>Untersu                                 | duntersuchung zur Nutzung der Abwanderkorridore und<br>e am Wasserkraftstandort "Auer Kotten"<br>elle Abwanderkorridore am "Auer Kotten"<br>chung der hydraulischen Signaturen am "Auer Kotten"                                                                                                 | <b> 64</b><br>65<br>68                    |

|       | 5.2.1    | Hydrometrische Messkampagne                         | 68    |
|-------|----------|-----------------------------------------------------|-------|
|       | 5.2.2    | Hydrodynamisch-numerische Strömungsberechnungen     | 74    |
| 5.3   | Freiland | duntersuchung mit HDX-Technologie am "Auer Kotten"  | 81    |
| 5.4   | Ergebni  | isse der Freilanduntersuchung zum Fischabstieg über |       |
|       | Wander   | korridore und Bypässe am "Auer Kotten"              | 84    |
| 6     | Befund   | e der ethohydraulischen Tests                       | 86    |
| 6.1   | Grunds   | ätzliche Erkenntnisse zum Fischverhalten            | 90    |
|       | 6.1.1    | Schwimmen in Strömung                               | 91    |
|       | 6.1.2    | Verharren und Gieren                                | 92    |
|       | 6.1.3    | Reaktionsräume                                      | 97    |
|       | 6.1.4    | Soziale Interaktionen                               | . 101 |
|       | 6.1.5    | Lerneffekte                                         | . 105 |
| 6.2   | Position | n einer Bypassöffnung in der Wassersäule            | . 107 |
|       | 6.2.1    | Aale                                                | . 107 |
|       | 6.2.2    | Lachs-Smolts                                        | . 108 |
|       | 6.2.3    | Potamodrome                                         | . 110 |
| 6.3   | Kontur   | und Kubatur einer Bypassöffnung                     | . 112 |
|       | 6.3.1    | Aale                                                | . 112 |
|       | 6.3.2    | Lachs-Smolts                                        | . 113 |
|       | 6.3.3    | Potamodrome                                         | . 114 |
|       | 6.3.4    | Diskussion der Befunde                              | . 116 |
| 6.4   | Anströr  | nung einer Bypassöffnung                            | . 122 |
|       | 6.4.1    | Aale                                                | . 122 |
|       | 6.4.2    | Lachs-Smolts                                        | . 124 |
|       | 6.4.3    | Potamodrome                                         | . 127 |
|       | 6.4.4    | Diskussion der Befunde                              | . 128 |
| 6.5   | Kombir   | nationen von Abwanderbarriere und Bypass            | . 131 |
|       | 6.5.1    | Aale                                                | . 131 |
|       | 6.5.2    | Lachs-Smolts                                        | . 135 |
|       | 6.5.3    | Potamodrome                                         | . 141 |
|       | 6.5.4    | Diskussion der Befunde                              | . 144 |
| 7     | Zusam    | menfassende Empfehlungen                            | . 146 |
| 8     | Literat  | urverzeichnis                                       | . 148 |
| Glass | ar       |                                                     | . 152 |
| G1033 |          |                                                     | , 104 |

Inhalt der Anhangs-CD: Messprotokolle der Fischhälterung ad libitum-Protokolle

# Abbildungsverzeichnis

| Abb. 1:  | Bestand an Fischschutz- und Fischabstiegsanlagen in Deutschland nach<br>Recherchen des Instituts für angewandte Ökologie (Stand 2015)                               | 17 |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Abb. 2:  | Verknüpfung von Literaturstudium sowie ethohydraulischen Labor- und Felduntersuchungen im Rahmen des F+E-Vorhabens                                                  | 19 |
| Abb. 3:  | Der Kraftwerkseinlauf des "Auer Kotten" (Wupper) mit seinem Feinrechen<br>zum Schutz abwandernder Fische und diversen Abwanderkorridoren                            | 22 |
| Abb. 4:  | Vertikales und horizontales Suchverhaltens eines telemetrisch besenderten<br>Amerikanischen Aals ( <i>Anguilla rostrata</i> )                                       | 24 |
| Abb. 5:  | In ethohydraulischen Tests an der TU Darmstadt im Jahr 1999 untersuchte<br>Anordnungen von Bypässen                                                                 | 24 |
| Abb. 6:  | Prinzipskizzen ausgeführter Abwanderbarrieren mit Bypass                                                                                                            | 25 |
| Abb. 7:  | Umlaufender Lochblechrechen vor einer Wasserkraftanlage an der Kinzig in<br>Baden-Württemberg mit geöffnetem Bypass und Wasserkraftanlage<br>Unkelmühle an der Sieg | 27 |
| Abb. 8:  | Ethohydraulische Untersuchungen an der TU Darmstadt: Durch Impingement hilflos an die Rechenfläche gepresster Aal                                                   | 28 |
| Abb. 9:  | Zick-Zack Rohr als Bypasslösung für Blankaale                                                                                                                       | 28 |
| Abb. 10: | Laborrinne (oben) vom Einlauf aus gesehen; Rinnenabschnitt mit seitlichem<br>Abzweig zum Nebenkompartiment (links unten); modulare Einbauten (rechts<br>unten)      | 33 |
| Abb. 11: | Fluchtsperre mit Deckel am Einlauf in die Laborrinne                                                                                                                | 33 |
| Abb. 12: | Einbauten in der Laborrinne                                                                                                                                         | 34 |
| Abb. 13: | Mit einer Fadenharfe wird der Strömungsverlauf vor einer Bypassöffnung sichtbar                                                                                     | 36 |
| Abb. 14: | Hydrometrische Messgeräte zur Erfassung von punktuellen<br>Fließgeschwindigkeiten und -richtungen                                                                   | 36 |
| Abb. 15: | Exemplarische Darstellung eines Messrasters mit etwa 700 Messpunkten                                                                                                | 37 |
| Abb. 16: | Beobachtungsstand, von dem aus das Verhalten der Fische in der Laborrinne direkt beobachtet, fotografiert und gefilmt wurde                                         | 38 |
| Abb. 17: | Realisierte Setup-Komplexe für die ethohydraulischen Tests                                                                                                          | 40 |
| Abb. 18: | Vorbild für das Setupkomplex "Vertikalrechen" ist das Wasserkraftwerk<br>Pointis an der Garonne (Frankreich)                                                        | 41 |
| Abb. 19: | Ethohydraulisch getestete Bypassöffnungen                                                                                                                           | 42 |
| Abb. 20: | Kubatur im Anschluss an die Öffnungsblende eines Bypasses                                                                                                           | 43 |
| Abb. 21: | Getestete Positionen von Bypassöffnungen                                                                                                                            | 44 |

| Abb. 22: | Anschluss des Nebenkompartiments zur Untersuchung der Auffindbarkeit und Akzeptanz seitlich abzweigender Bypassöffnungen                     | 45 |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------|----|
| Abb. 23: | Modifikation des Setup-Komplex "Vertikalrechen" mittels Nebenkompartiment                                                                    | 45 |
| Abb. 24: | Aufbau der verwendeten Vertikal- und Horizontalrechen                                                                                        | 46 |
| Abb. 25: | Hälterbecken mit zwei aufgeklappten Deckeln sowie für eine Reinigung entnommener Zwischenwände aus Lochblech                                 | 47 |
| Abb. 26: | Kapitaler Blankaal                                                                                                                           | 49 |
| Abb. 27: | Silbrig umgefärbter Lachs-Smolt                                                                                                              | 50 |
| Abb. 28: | Potamodromer Wels ( <i>Silurus glanis</i> ) aus der Lahn im ethohydraulischen Versuch                                                        | 51 |
| Abb. 29: | Zwei potamodrome Hechte (Esox lucius)                                                                                                        | 51 |
| Abb. 30: | Startkäfig mit Lachs-Smolts in der Laborrinne                                                                                                | 54 |
| Abb. 31: | Das strukturierte Berechnungsgitter als Grundlage der hydrodynamisch-<br>numerischen Strömungssimulation                                     | 55 |
| Abb. 32: | Vergleich zwischen gemessener Situation (oben) und mit dem kalibrierten<br>HN-Modell berechneter Situation (unten)                           | 57 |
| Abb. 33: | Exemplarische Darstellung eines Isotachen- (oben), Vektor- (Mitte) und Stromliniendiagramms (unten)                                          | 59 |
| Abb. 34: | Darstellung ethohydraulischer Signaturen für ein gegebenes Setup                                                                             | 61 |
| Abb. 35: | Zugehöriges Stromlinienbild für das Setup aus Abbildung 34                                                                                   | 62 |
| Abb. 36: | Schema der Position von Abwanderkorridoren und Bypässen am<br>Kraftwerksstandort "Auer Kotten"                                               | 65 |
| Abb. 37: | Raugerinne-Beckenpass am Ausleitungswehr "Auer Kotten"                                                                                       | 66 |
| Abb. 38: | Unterwassergraben des Kraftwerks mit danebenliegendem Einstieg in den neu erbauten Schlitzpass                                               | 67 |
| Abb. 39: | Einlaufbauwerk der Wasserkraftanlage in gelenztem Zustand                                                                                    | 67 |
| Abb. 40: | Lage der Messraster beim Smoltbypass (oben) und Vektordarstellung des charakteristischen Strömungsverlaufs (unten)                           | 71 |
| Abb. 41: | Lage der Messraster beim oberflächennahen Bypass (oben) und<br>Vektordarstellung des Strömungsverhaltens in den gemessenen Ebenen<br>(unten) | 72 |
| Abb. 42: | Lage der Messraster beim Einlauf Schlitzpass (oben) und Vektordarstellung des Strömungsverhaltens in den gemessenen Ebenen (unten)           | 73 |
| Abb. 43: | Ablauf einer hydrodynamisch-numerischen Modellierung                                                                                         | 74 |
| Abb. 44: | Das dreidimensionale HN-Modell "Auer Kotten"                                                                                                 | 75 |

| Abb. 45: | Berechnete Fließgeschwindigkeiten als Isotachendiagramm (oben) und<br>Stromliniendarstellung der Strömungsverläufe (unten) im kalibrierten HN-<br>Modell "Auer Kotten"                                | 76 |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Abb. 46: | Stromliniendarstellung im Nahfeld des Smoltbypass. Im gelb umkreisten<br>Bereich (unten) ist deutlich der Wiederaustritt eines Teils der Strömung aus<br>dem Smoltbypass zu erkennen                  | 77 |
| Abb. 47: | Stromliniendarstellung im Nahfeld der oberflächennahen Bypassöffnung                                                                                                                                  | 78 |
| Abb. 48: | Stromliniendarstellung im Nahfeld des Einstiegs in den Schlitzpass                                                                                                                                    | 78 |
| Abb. 49: | Isotachendarstellung der berechneten Fließgeschwindigkeiten (oben) und<br>Stromliniendarstellung der Strömungsverläufe (unten) für die Variante<br>"Spülschütz offen"                                 | 80 |
| Abb. 50: | Stromliniendarstellung für die Variante "Smoltbypass geschlossen"                                                                                                                                     | 81 |
| Abb. 51: | Stromliniendarstellung für die Variante "oberflächennaher Bypass<br>geschlossen"                                                                                                                      | 81 |
| Abb. 52: | Funktionsprinzip der HDX-Technologie                                                                                                                                                                  | 82 |
| Abb. 53: | HDX-Transponder zur individuellen Markierung von Fischen                                                                                                                                              | 82 |
| Abb. 54: | Am Gewässergrund des Mutterbettes vom "Auer Kotten" fixierte "schwimm<br>drüber"-Antenne (links) und Montage der 6 x 4 m großen "schwimm durch"-<br>Rahmenantenne im Auslauf des Krafthauses (rechts) | 83 |
| Abb. 55: | Intraabdominale Transpondierung eines Aals                                                                                                                                                            | 83 |
| Abb. 56: | Setup mit Wand und seitlich davon sohlen- und oberflächennah angeordneten rechteckigen Bypassöffnungen                                                                                                | 88 |
| Abb. 57: | Setup mit Vertikalrechen und seitlich davon sohlen- und oberflächennah angeordneten rechteckförmigen Bypassöffnungen                                                                                  | 88 |
| Abb. 58: | Setup mit Schrägrechen und abstrom anschließendem sohlennahem rechteckigem Bypass                                                                                                                     | 89 |
| Abb. 59: | Setup mit Schrägrechen und abstrom anschließendem, orthogonal aus der Laborrinne abzweigendem sohlennahem Bypass mit kreisförmiger Öffnung                                                            | 89 |
| Abb. 60: | Kreisförmige Bypassöffnung mit anschließender röhrenförmiger Kubatur aus Plexiglas                                                                                                                    | 90 |
| Abb. 61: | Wertebereiche der Fließgeschwindigkeit bezüglich der positiven Rheotaxis                                                                                                                              | 91 |
| Abb. 62: | Schematische Verteilung von Reaktionsräumen im Versuchsstand, in denen die Probanden ein bestimmtes Verhalten zeigten                                                                                 | 92 |
| Abb. 63: | Definition von Längs-, Quer- und Hochachse im Schiffsbau (oben) und<br>Prinzip einer Gierfähre, die ohne Motorkraft einen Fluss überquert (unten)                                                     | 94 |
| Abb. 64: | Scherbrett mit einem Fangsack, dem so genannten Hamen                                                                                                                                                 | 95 |

| Abb. 65: | Schwimmkörper des Scherbretthamens des Fischereibetriebs Gebr.<br>Dobberschütz an der Weser                                                                                          | 95  |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Abb. 66: | Hochachse eines Fisches und Gierbewegung                                                                                                                                             | 96  |
| Abb. 67: | Fische vor einer schräg zur Anströmung stehenden Abwanderbarriere                                                                                                                    | 96  |
| Abb. 68: | Mit einer Fadenharfe sichtbar gemachter Verlauf von Stromlinien                                                                                                                      | 97  |
| Abb. 69: | Schematische Verteilung von Reaktionsräumen im Versuchsstand, in denen die Probanden ein bestimmtes Verhalten zeigten                                                                | 97  |
| Abb. 70: | Reaktionsraum vor einer Bypassöffnung                                                                                                                                                | 100 |
| Abb. 71: | Skizze zur Definition der Reaktionsraumlänge R <sub>C</sub>                                                                                                                          | 101 |
| Abb. 72: | Der Hecht ist ein Einzelgänger                                                                                                                                                       | 102 |
| Abb. 73: | Gemischtartenverband aus Barben und Döbeln annähernd gleicher Größe                                                                                                                  | 103 |
| Abb. 74: | Schwarmverband von Lachs-Smolts                                                                                                                                                      | 104 |
| Abb. 75: | Ein Wächter verteidigt die Bypassöffnung gegen Artgenossen                                                                                                                           | 104 |
| Abb. 76: | Einfluss von Territorialverhalten bei Lachs-Smolts auf die Anzahl der<br>Passagen einer Bypassöffnung                                                                                | 105 |
| Abb. 77: | Kumulationskurve von Passagen für den Vergleich der Aktivität derselben<br>Gruppe von Lachs-Smolts an zwei aufeinander folgenden Versuchstagen<br>unter gleichen Versuchsbedingungen | 106 |
| Abb. 78: | Mit dem Kopf voran mit der Strömung auf die Abwanderbarriere zuschwimmende und -driftende Aale                                                                                       | 107 |
| Abb. 79: | Vergleich der Passagehäufigkeit einer oberflächennahen und einer sohlnahen<br>Bypassöffnung beim Setup-Komplex "Wand" (links) und beim Komplex<br>"Vertikalrechen" (rechts) für Aale | 108 |
| Abb. 80: | Vergleich der Passagezahlen durch eine oberflächen- und eine sohlennahe<br>Bypassöffnung durch Lachs-Smolts                                                                          | 109 |
| Abb. 81: | Die Auslenkung der Fäden einer Fadenharfe zeigen, dass der Lachs-Smolt<br>einer Teilströmung folgt, die eine oberflächennahe Bypassöffnung anströmt                                  | 110 |
| Abb. 82: | Vergleich der Annahme einer oberflächen- und einer sohlennahen<br>Bypassöffnung durch potamodrome Arten                                                                              | 111 |
| Abb. 83: | Von Aalen präferierte Kontur einer Bypassöffnung in Abhängigkeit vom Typ<br>der Abwanderbarriere                                                                                     | 112 |
| Abb. 84: | Von Lachs-Smolts präferierte Kontur einer Bypassöffnung in Abhängigkeit von der Abwanderbarriere                                                                                     | 113 |
| Abb. 85: | Von Lachs-Smolts präferierte Kubatur einer Bypassöffnung                                                                                                                             | 114 |
| Abb. 86: | Bewegungsstudie der rückwärtigen Passage eines Karpfens durch eine rechteckige Bypassöffnung                                                                                         | 114 |

| Von der Gruppe potamodromer Arten präferierte Bypasskontur                                                                                                                            | 115                                                        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|
| Auswirkung einer massereichen Hauptströmung auf den Teilabfluss eines<br>Bypasses                                                                                                     | 117                                                        |
| Einschnürung der Strömung hinter einer durchflossenen Öffnung infolge der Strömungsumlenkung an den Öffnungskanten                                                                    | 118                                                        |
| Vergleich der Strömungseinschnürung hinter einer kreisförmigen<br>Bypassöffnung (links) und einer nahezu flächengleichen quadratischen<br>Bypassöffnung (rechts)                      | 119                                                        |
| Vergleich der Geschwindigkeitsprofile innerhalb einer röhrenförmigen (links)<br>und einer eckigen (rechts) Kubatur hinter Bypassöffnungen                                             | 120                                                        |
| Numerische Analyse der Strömungssignaturen innerhalb von Konfusoren für verschiedene Bypassöffnungskonturen                                                                           | 121                                                        |
| Der Einstieg in den Schlitzpass und der Querschnitt des Spülschützes stellen<br>am Kraftwerk "Auer Kotten" aufgrund ihrer großflächigen Öffnungen<br>attraktive Abwanderkorridore dar | 122                                                        |
| Durchschnittliche Anzahl von Passagen eines Bypasses von Aalen in<br>Abhängigkeit von der Anströmgeschwindigkeit der Bypassöffnung                                                    | 123                                                        |
| Scheureaktion eines Aals mit Kehrtwende in einer Bypassöffnung                                                                                                                        | 123                                                        |
| Kumulierte Darstellung der Abfolge von Passagen von Aalen in einen Bypass<br>hinein bei unterschiedlicher Anströmung seiner Öffnung                                                   | 124                                                        |
| Durchschnittliche Anzahl von Passagen eines Bypasses von Lachs-Smolts in<br>Abhängigkeit von der Anströmgeschwindigkeit der Bypassöffnung                                             | 125                                                        |
| Durchschnittliche Anzahl von Passagen eines Bypasses von Lachs-Smolts in<br>Abhängigkeit von Barrieretyp und Anströmgeschwindigkeit der<br>Bypassöffnung                              | 125                                                        |
| Kumulierte Darstellung der Abfolge der Passagen von Lachs-Smolts in einen<br>Bypass hinein bei unterschiedlicher Anströmung der Öffnung                                               | 126                                                        |
| Auffindbarkeit eines Bypasses für Lachs-Smolts in Abhängigkeit von der Anströmung eines Schrägrechens                                                                                 | 127                                                        |
| Anzahl von Passagen eines Bypasses von Potamodromen in Abhängigkeit<br>von der Anströmgeschwindigkeit der Bypassöffnung und der<br>Rechenanströmung                                   | 128                                                        |
| Isometrische Darstellung von Strömungsmessdaten aus dem Setup-Komplex<br>"Vertikalrechen" mit runder Bypassöffnung für unterschiedliche<br>Anströmgeschwindigkeiten                   |                                                            |
| Phasen des Umkehrverhaltens von Aalen                                                                                                                                                 | 132                                                        |
| Umkehr- und Fluchtverhalten von Aalen an einem Vertikalrechen mit in<br>Hauptfließrichtung angeordneten Bypässen                                                                      | 133                                                        |
|                                                                                                                                                                                       | Von der Gruppe potamodromer Arten präferierte Bypasskontur |

| Abb. 105: | Umkehr- und Fluchtverhalten von Aalen an einem Schrägrechen mit einem 90° zur Fließrichtung angeordneten Bypass                            | 133 |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Abb. 106: | Anteile verschiedener Verhaltensweisen von Aalen bei der Annäherung an eine Rechen-Bypass-Konstellation                                    | 134 |
| Abb. 107: | Verhalten von Lachs-Smolts vor einer Wand mit zwei seitlich angeordneten<br>Bypassöffnungen                                                | 135 |
| Abb. 108: | Ein Schwarm Lachs-Smolts hält deutlichen Abstand zu einer angeströmten Wand                                                                | 135 |
| Abb. 109: | Verhalten von Lachs-Smolts vor einem Vertikalrechen mit zwei seitlich angeordneten Bypassöffnungen                                         | 136 |
| Abb. 110: | Lachs-Smolts im Reaktionsraum vor einem Bypass seitlich des<br>Vertikalrechens                                                             | 137 |
| Abb. 111: | Stromabwärts entlang eines Schrägrechens auf den am abstromigen Ende positionierten Bypass zu gierende Lachs-Smolts                        | 138 |
| Abb. 112: | Konzentration von Lachs-Smolts vor dem Bypass am abstromigen Ende eines<br>Schrägrechens                                                   | 138 |
| Abb. 113: | Reaktion der Lachs-Smolts auf einen orthogonal zur Strömungsrichtung angeordneten Bypass                                                   | 139 |
| Abb. 114: | Lachs-Smolts unmittelbar vor der 90° Bypassöffnung orthogonal zur<br>Anströmung des Schrägrechens                                          | 139 |
| Abb. 115: | "Abtauchen" der Nahfeldströmungen vor der Bypassöffnung                                                                                    | 140 |
| Abb. 116: | Vergleich der Akzeptanz von Lachs-Smolts bei unterschiedlich zur<br>Fließrichtung an unterschiedlichen Abwanderbarrieren angeordneten      |     |
|           | Bypässen                                                                                                                                   | 141 |
| Abb. 117: | Scheu- und Fluchtreaktion eines Welses vor einer Bypassöffnung                                                                             | 142 |
| Abb. 118: | Wels, der bei einer Anströmgeschwindigkeit $v_{Rechen} = 0.8$ m/s an den Vertikalrechen angepresst wird.                                   | 142 |
| Abb. 119: | Auch potamodrome Arten zeigten wenig Interesse an einem orthogonal zur<br>Hauptströmung angeordneten Bypass                                | 143 |
| Abb. 120: | Vergleich der Akzeptanz von 0° und 90° zur Fließrichtung an<br>unterschiedlichen Abwanderbarrieren angeordneter Bypässe für<br>Potamodrome | 144 |
|           |                                                                                                                                            |     |

## Tabellenverzeichnis

| Tab. 1: | Zeitfenster der ethohydraulischen Tests mit Lachs-Smolts, verschiedenen potamodromen Arten und Aalen an der TU Darmstadt                                                                                        | 20  |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Tab. 2: | Verfügbare Bemessungskriterien für Bypässe in Deutschland                                                                                                                                                       | 29  |
| Tab. 3: | Artspektrum, Anzahl und Länge der Probanden                                                                                                                                                                     | 52  |
| Tab. 4: | Transdisziplinäre Verschneidung biologischer und ingenieurspezifischer<br>Arbeiten im Rahmen des BfN-Projekts                                                                                                   | 63  |
| Tab. 5: | Abwanderkorridore und Bypässe am "Auer Kotten"                                                                                                                                                                  | 66  |
| Tab. 6: | Aufteilung der abgewanderten Aale und Lachs-Smolts auf die einzelnen<br>Wanderkorridore und Bypässe am "Auer Kotten" (Untersuchungszeitraum<br>Oktober 2013 bis Oktober 2015)                                   | 84  |
| Tab. 7: | Übersicht der baulichen und hydraulischen Parameter, Einstellungen und Zielarten, mit denen ethohydraulische Tests durchgeführt wurden                                                                          | 87  |
| Tab. 8: | Günstige Anströmgeschwindigkeiten vor einer Abwanderbarriere in Kombination mit einer Bypassöffnung                                                                                                             | 131 |
| Tab. 9: | Aus dem vorliegenden F+E-Vorhaben ergänzt um andere Quellen<br>resultierende Erkenntnisse und Empfehlungen für Abwanderbarrieren mit<br>Bypässen sowie fischrelevante hydraulische Grenzwerte für deren Betrieb | 147 |

## Vorwort

Anthropogene Einflüsse haben die aquatischen Lebensräume von Pflanzen und Tieren stark verändert. Der Ausbau der Fließgewässer hat in den vergangenen Jahrzehnten dazu geführt, dass die Durchgängigkeit für die Lebewesen in vielen Gewässern in Deutschland durch Querbauwerke, wie Staustufen oder Wasserkraftanlagen, eingeschränkt bzw. vollständig unterbrochen ist. Artspezifische Wanderbewegungen sind nur noch begrenzt möglich. Bei den Fischen betrifft dies sowohl den Auf- als auch den Abstieg in den Fließgewässern.

Eine möglichst uneingeschränkte Durchwanderbarkeit vom Meer bis zu den Laichhabitaten in den Flussoberläufen (diadrome Fischarten) sowie innerhalb des Fließgewässersystems (potamodrome Fischarten) ist deshalb ein zentrales Ziel von Renaturierungsmaßnahmen an Fließgewässern. Die Europäische Aalverordnung (VO EG Nr. 1100/2007), die EG-Wasserrahmenrichtlinie (RL 2000/60/EG), die Fauna-Flora-Habitat-Richtlinie (RL 92/43/EWG) und das Wasserhaushaltsgesetz (WHG) stecken den gesetzlichen Rahmen dafür ab.

Anlagen für den Fischaufstieg sind bereits gut untersucht und die fundierten Erkenntnisse sind bereits in ein praxisorientiertes Regelwerk zur Gestaltung, Bemessung und Qualitätssicherung umgesetzt (DWA-M 509). Es fehlen aber noch wesentliche Grundlagen für den Bau von Anlagen für den Fischabstieg. Die Entwicklung von funktionsfähigen Abstiegseinrichtungen, welche an kleinen und großen Wasserkraftanlagen die abwärts gerichtete Wanderbewegung für alle Fischarten und alle Altersstufen zuverlässig ermöglichen, ist aber eine weitere, zwingend notwendige Voraussetzung für den langfristigen Erhalt und den Wiederaufbau einer stabilen Fischfauna.

Mit diesem Vorhaben wurden wichtige Erkenntnisse zum Orientierungs- und Suchverhalten abwandernder Fische im Nahbereich von Bypassöffnungen und Fischschutzeinrichtungen gewonnen. Darüber hinaus konnte aufgezeigt werden, dass die Kombination von Freiland- und Laboruntersuchungen die Aussagekraft der Ergebnisse zum Verhalten von Fischen deutlich verbessert. Diesen Kenntnisstand gilt es kontinuierlich weiter zu verbessern, um möglichst zügig zu naturschutzfachlich sinnvollen und rechtssicheren Lösungen für den Fischabstieg zu kommen.

Prof. Dr. Beate Jessel Präsidentin des Bundesamtes für Naturschutz (BfN)

## 1 Einleitung

#### 1.1 Veranlassung und Ziele des F+E-Vorhabens

Die Wiederherstellung der stromauf- und stromabwärts gerichteten Durchgängigkeit von Fließgewässern für die aquatische Flora und Fauna ist als ein wichtiger Faktor zur Verbesserung des ökologischen Zustands dieser Ökosysteme und damit als Lebensgrundlage für den Menschen erkannt und als gesellschaftspolitisches Ziel weitgehend akzeptiert (Richtlinie 2000/60/EG, WRRL). Infolge der Novellierung des Wasserhaushaltsgesetzes sind nach § 35 an Wasserkraftanlagen daher geeignete Maßnahmen zum Schutz der Fischpopulationen zu ergreifen. Nach dem derzeitigen Stand von Wissen und Technik bedeutet dies konkret, dass Fischen sowohl eine auffindbare Passagemöglichkeit zur stromauf- und -abwärts gerichteten Wanderung, als auch ein Schutz zur Verhinderung ihrer Schädigung in für sie gefährlichen Bereichen, wie Einlaufrechen oder Turbinen ergriffen werden muss.

Die Europäische Aalverordnung (VO EG Nr. 1100/2007), die EG-Wasserrahmenrichtlinie (RL 2000/60/EG) und die Fauna-Flora-Habitat-Richtlinie (RL 92/43/EWG) machen ebenfalls Maßnahmen zum Schutz wandernder Fische und für den Erhalt von Fischarten notwendig. Zudem ist die Inanspruchnahme einer erhöhten Einspeisevergütung nach dem Erneuerbare Energien Gesetz (EEG) an die Umsetzung ökologischer Verbesserungen am Standort der Wasserkraftanlage gebunden. Im Gegensatz zu den Funktionszusammenhängen beim Fischaufstieg fehlen für den Fischabstieg noch wesentliche Grundlagen. Die Entwicklung von funktionsfähigen Fischabstiegseinrichtungen, welche die abwärts gerichtete Durchgängigkeit beim Betrieb kleiner und großer Wasserkraftanlagen zuverlässig und mit einem hohen Wirkungsgrad gewährleisten, ist jedoch eine wesentliche Voraussetzung für die Erreichung des "guten ökologischen Zustandes" bzw. des "guten ökologischen Potenzials" gemäß WRRL. Es gibt erste Kenntnisse zum Verhalten von Fischen vor den Fischschutzeinrichtungen von Wasserkraftanlagen wonach die derzeit zugrunde gelegten geometrischen und hydraulischen Bemessungswerte für den Bau der Schutzeinrichtungen nicht ausreichend scheinen, um die abwärtsgerichtete Durchgängigkeit sicherzustellen.

Bezüglich auffindbarer und passierbarer Fischaufstiegsanlagen hat sich aufgrund langjähriger Erfahrungen aus Feldversuchen und ethohydraulischen Laboruntersuchungen ein Stand der Technik ergeben, welcher Grenz- und Richtwerte definiert und konkrete Konstruktions- und Bemessungsempfehlungen gibt (DWA 2014). Damit lassen sich an Aufwanderhindernissen funktionsfähige Fischaufstiegsanlagen unterschiedlichen Typs errichten.

Stromabwärts wandernde Fische unterliegen hingegen bei der Überwindung von Wasserkraftanlagen und Wasserausleitungsbauwerken nach wie vor einem hohen Risiko, verletzt oder sogar getötet zu werden. Abhilfe könnten wirksame Fischschutzanlagen in Kombination mit alternativen Abwanderkorridoren – die auch als Bypässe bezeichnet werden – schaffen, von denen allerdings in Deutschland bisher nur wenige installiert sind. Zudem wurden solche Anlagen bisher nur in Einzelfällen einer belastbaren Überprüfung ihrer Wirksamkeit unterzogen und wenn, erwies sich die überwiegende Mehrzahl als bestenfalls unbefriedigend funktionstüchtig (Abb. 1).

Ein wesentlicher Grund für fehlende Funktionskontrollen besteht unter anderem darin, dass es mit konventionellen fischereilichen Methoden kaum möglich ist, alle an einem Standort vorhandenen potentiellen Wanderkorridore zeitgleich rund ums Jahr zu kontrollieren, um Erkenntnisse über präferierte Abwanderkorridore zu erhalten. Diese fehlenden Kenntnisse über das Verhalten abwandernder Fische bei der Annäherung an ein Wanderhindernis (mit und ohne Wasserkraftanlage) und der Faktoren, die über die Auffindbarkeit und Akzeptanz alternativer Abwanderkorridor entscheiden, verhindern letztlich die Entwicklung wirksamer Schutz- und Bypasssysteme für abwandernde Fische.