Reactive Sputter Deposition

von: Diederik Depla, Stijn Mahieu

Springer-Verlag, 2008

ISBN: 9783540766643 , 572 Seiten

Format: PDF, OL

Kopierschutz: DRM

Windows PC,Mac OSX Apple iPad, Android Tablet PC's Online-Lesen für: Windows PC,Mac OSX,Linux

Preis: 171,19 EUR

Mehr zum Inhalt

Reactive Sputter Deposition


 

Preface

6

Contents

8

Contributors

15

1 Simulation of the Sputtering Process

19

1.1 Introduction

19

1.2 Computer Simulation Codes

20

1.3 Total Sputtering Yield

23

1.4 Differential Sputtering Yield

34

1.5 Sputtering from Rough Surface

46

1.6 Sputtering of Compound Targets

48

1.7 Conclusion

55

References

57

2 Electron Emission from Surfaces Induced by Slow Ions and Atoms

61

2.1 Introduction

61

2.2 Physical Mechanisms

62

2.3 Electron Yields

64

2.4 The Role of Ion-Induced Electron Emission in Glow Discharges

68

2.5 Outlook

76

References

76

3 Modeling of the Magnetron Discharge

79

3.1 Introduction

79

3.2 Overview of Di.erent Modeling Approaches for Magnetron Discharges

83

3.3 Challenges Related to Magnetron Modeling

92

3.4 Two-Dimensional Semi-Analytical Model for a DC Planar Magnetron Discharge

96

3.5 PIC-MCC Model for a DC Planar Magnetron Discharge

101

3.6 Extension of the PIC-MCC Model: To Include Sputtering and Gas Heating

133

3.7 Conclusions and Outlook for Future Work

141

References

142

4 Modelling of Reactive Sputtering Processes

149

4.1 Introduction

149

4.2 Basic Model for the Reactive Sputtering Process

151

4.3 Steady State Equations

154

4.4 Influence of Material Properties and Processing Conditions

159

4.5 Concluding Remarks

169

References

169

5 Depositing Aluminium Oxide: A Case Study of Reactive Magnetron Sputtering

171

5.1 Introduction

171

5.2 Some Experiments

172

5.3 An Extended Model for Reactive Magnetron Sputtering

185

5.4 Confrontation Between Experiment and Model

193

5.5 Towards a More Complete Model for Reactive Magnetron Sputtering

204

5.6 Conclusion

211

References

214

6 Transport of Sputtered Particles Through the Gas Phase

216

6.1 Introduction

216

6.2 Radial Distribution Where Sputtered Particles Leave the Target

217

6.3 Energy and Angular Distribution of Sputtered Particles Leaving the Target

218

6.4 Describing the Collision with the Gas Particle

225

6.5 Gas Rarefaction

234

6.6 Typical Results of a Binary Collision Monte Carlo Code

235

6.7 Specific Example: In-Plane Alignment of Biaxially Aligned Thin Films

240

6.8 Conclusions

241

References

242

7 Energy Deposition at the Substrate in a Magnetron Sputtering System

245

7.1 Introduction

245

7.2 Energy Measurement

247

7.3 Factors A.ecting Energy Flux

248

7.4 Total Energy per Deposited Atom

253

7.5 Energy Model

255

7.6 Conclusions

267

References

267

8 Process Diagnostics

271

8.1 Introduction

271

8.2 Electrical Probes

272

8.3 Mass Spectrometry

286

8.4 Optical Emission Spectroscopy

302

8.5 Optical Imaging

308

8.6 Laser-Induced Fluorescence

309

8.7 Summary

312

References

312

9 Optical Plasma Diagnostics During Reactive Magnetron Sputtering

317

9.1 Introduction

317

9.2 Emission Spectroscopy of Magnetron Plasmas

318

9.3 Resonant Absorption Spectroscopy of Magnetron Plasmas

327

9.4 Laser Spectroscopy of Magnetron Plasmas

336

9.5 Optical Diagnostic of High-Power Impulse Magnetron Sputtering Discharges

343

9.6 Conclusion

348

References

349

10 Reactive Magnetron Sputtering of Indium Tin Oxide Thin Films: The Cross-Corner and Cross-Magnetron E.ect

352

10.1 Introduction

352

10.2 The CCE and CME as an Inhomogeneous Target Erosion

353

10.3 Evidence of the CCE and CME From In Situ Measurements

361

10.4 CCE, CME and Film Property Distribution: ITO as an Example

369

10.5 CCE, CME and the Role of the Atomic Oxygen in the Process Gas

375

References

380

11 Reactively Sputter-Deposited Solid Electrolytes and Their Applications

382

11.1 Introduction

382

11.2 Crystallographic Basis of the Solid Electrolyte

384

11.3 Application of Solid Electrolytes

392

11.4 Conclusion

417

References

419

12 Reactive Sputtered Wide-Bandgap p-Type Semiconducting Spinel AB2O4 and Delafossite ABO2 Thin Films for “Transparent Electronics”

427

12.1 Introduction

427

12.2 Spinel and Delafossite Material

428

12.3 p-Type Transparent Conducting Oxides Based on Spinel and Delafossite Structure

431

12.4 Transparent Junctions Based on Spinel and Delafossite Oxides

455

12.6 Reactive DC Sputter Deposition of Delafossite p-CuAlO2+x Thin Film

469

12.7 Conclusions and Future Directions

487

References

491

13 Oxide-Based Electrochromic Materials and Devices Prepared by Magnetron Sputtering

499

13.1 Introduction

499

13.2 Energy Efficiency of Chromogenic Building Skins

500

13.3 Electrochromic Device Design and Materials

501

13.4 Properties and Applications of Electrochromic Foil

504

13.5 Conclusion and Outlook

507

References

508

14 Atomic Assembly of Magnetoresistive Multilayers

510

14.1 Introduction

510

14.2 Atomistic Simulations

518

14.3 Growth of Metal Multilayers

530

14.4 Ion-Assisted Growth of Metal Multilayers

545

14.5 Dielectric Layer Deposition

558

14.6 Ion-Assisted Reactive Growth of Dielectric Layers

566

14.7 Conclusions

568

References

568

Index

573